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ABSTRACT 

This deliverable report addresses the scientific and technical requirements for a fossil fuel observation 

system based on experimental and theoretical work carried out in RINGO Task 1.2. The report focuses on 

the question of how to optimise the 14CO2 sampling strategy in ICOS by serving two different purposes. First, 

to improve the experimental ability to separate fossil fuel CO2 contributions in urban emission plumes and 

second to provide an optimised monitoring network that enables atmospheric inverse modelling 

frameworks to estimate national fossil fuel CO2 emissions with high confidence. 

In the experimental part atmospheric combined up- and downwind measurements around three European 

cities: Paris, Rotterdam and Mannheim/Ludwigshafen were conducted. To exploit synergy with the ICOS 

atmosphere network one of the two monitoring stations was selected to be an existing ICOS atmosphere 

station. This station was supplemented by an adjoined station on the opposing side of the urban area. For 

this two new monitoring stations have been built up within the project. The approach of observing urban 

fossil fuel CO2 enhancements (ΔffCO2) based on 14CO2 measurements using the combination of ICOS stations 

and associated partner stations is called the RINGO approach further on. For the three urban areas mean 

fossil fuel CO2 enhancements between 2 and 61 ppm were detected using the RINGO approach. We 

developed a trajectory forecast-based sampling strategy, allowing targeted sampling during suitable 

meteorological conditions. This targeted sampling in the RINGO approach leads to fewer sample pairs that 

yield results below the 14CO2-based ΔffCO2 detection limit than in other comparable urban fossil fuel 

monitoring networks. The linear regressions between the total and the fossil CO2 enhancements across the 

cities Paris and Mannheim/Ludwigshafen yielded slopes of 0.98±0.05 (R²=0.96) and 1.11±0.17 (R²=0.80), 

respectively. For both cities, the data revealed a nearly constant non-fossil CO2 enhancement of about 2 ppm 

at the downwind station, which is not yet understood. The RINGO approach was compared to an alternative 

approach, where the upwind 14CO2 measurements are replaced by regional 14CO2 background 

measurements. For both approaches, an uncertainty budget was developed considering nuclear and 

biogenic 14CO2 emissions both potentially masking part of the ffCO2 signal. The typical uncertainty for 14CO2-

based fossil fuel CO2 enhancements was found to be 1.2 ppm for the RINGO approach whereas it was 1.8 

ppm for the regional background approach. Further advantages of the RINGO approach are lower sensitivity 

to the highly uncertain nuclear 14CO2 contaminations and a better delimitation of the study area by focusing 

on the differential footprint of the urban area between the observation stations, which is responsible for the 

observed concentration difference between the two RINGO stations. 

In the theoretical, model-based part of Task 1.2 an Observation System Simulation Experiment (OSSE) was 

performed to investigate the uncertainty reduction potential of 14CO2 measurements in ICOS for constraining 

national total fossil fuel emissions. The OSSE was designed to investigate differences between an ICOS 

observation network and an alternative RINGO observation network around cities. The OSSE was carried out 

by two fundamentally different atmospheric inversion modelling frameworks for a two-months winter 

period in 2016, testing dedicated sampling strategies in each network. For both models and observation 

networks, the addition of 14CO2 flask samples improves the separation between fossil and biogenic CO2 

fluxes. The misfit between the prior and true fossil fuel CO2 fluxes could be reduced by 40% to 80% on 

average using in-situ CO2 measurements and 14CO2 flask samples. The independent modelling frameworks 

give different answers on which observation network (ICOS or RINGO) offers a greater uncertainty reduction 

potential to optimise national total fossil fuel CO2 emissions. Potential reasons for this disagreement are 

discussed in the summary of this report.   
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1 INTRODUCTION 

The focus of the existing ICOS atmosphere station network is on the observation of biogenic carbon fluxes. Better 

quantifying continental ecosystem CO2 fluxes is of utmost importance since the magnitude of gross biogenic fluxes is 

about one order of magnitude larger compared to fossil fuel CO2 (ffCO2) emissions and associated with larger 

uncertainties as well. Thus, ICOS atmosphere stations, in general, should be built at least 50 km from any larger ffCO2 

emission source (ICOS RI, 2020). Being located away from ffCO2 emission “hot spots” increases the relative share of 

the biogenic compared to the fossil fuel CO2 signal. Although the CO2 signals originating from the combustion of fossil 

fuels are small at such “background” stations, Basu et al. (2020) succeeded in determining the national fossil fuel CO2 

emissions of the United States of America (USA) with an uncertainty of only a few per cent using atmospheric 14CO2 

measurements and inverse modelling. With the first global stocktake of the Paris Climate Accord approaching (UNFCCC 

2015), increased efforts are put into national and international systems to better monitor and verify net CO2 fluxes. 

Fossil fuel CO2 fluxes into the atmosphere are therefore being targeted as outlined for example in the European 

Union's so-called Green Report on "An Operational Anthropogenic CO₂ Emissions Monitoring & Verification Support 

Capacity" (Pinty et al., 2019) and the Strategy Paper on Anthropogenic CO2 emissions Monitoring and Verification 

Support (CO2MVS) capacity (Janssens-Maenhout et al., 2020). Both studies illustrate how an interplay of ground- and 

satellite-based measurements could lead to a better estimation of anthropogenic and particularly ffCO2 emissions. 

A large share of global and European fossil fuel CO2 emissions originates from urban areas and other hotspots like 

point sources (Seto et al., 2014). Further, it is expected that a significant part of future emission reductions will occur 

in urban areas. This is one of the reasons why there are already numerous efforts to experimentally determine fossil 

fuel CO2 emissions from urban areas. Indianapolis, Toronto, Los Angeles, Salt Lake City, London, Paris, Rotterdam and 

Heidelberg are only a few of many examples (Levin et al., 2011, Turnbull et al. 2015, Breón et al. 2015, Boon et al., 

2016, Pugliese et al., 2018, Graven et al., 2018 Super et al. 2020a). Determining fossil fuel CO2 emissions from urban 

areas and hotspots from ground-based observations is further interesting, because the current and the next 

generation of satellite-based ffCO2 estimates are performed for hotspot regions only (Reuter et al., 2019). Several 

national and international research initiatives are actively working towards the design and standardization of such 

urban observing networks (e.g. IG3IS, CO2-USA, CoCO2 VERIFY, CHE). The assessment and finally the combination of 

different observational approaches such as in-situ networks of towers, low-cost sensors, total column instruments, 

eddy covariance flux towers, as well as radiocarbon in CO2 are of particular importance for developing an optimized 

design for urban fossil fuel observation strategies. Radiocarbon observations of atmospheric CO2 play hereby a key 

role. Due to their age, fossil fuels are void of radiocarbon and CO2 emissions from their combustion lowers thus the 

natural 14C/C ratio in atmospheric CO2 called Suess-effect (Suess, 1955). Therewith, Radiocarbon is the most direct 

measure to separate biogenic from fossil fuel CO2
 (e.g. Levin et al., 2003). The European Union’s Green Report outlines 

the needs for a future anthropogenic CO₂ Emissions Monitoring & Verification Support Capacity and identified 

explicitly the following as one of the missing elements: 

“Well-coordinated networks in the vicinity of intense emission areas, beyond the plans to increase the 

current capabilities of the ICOS network, must be developed in Europe to accurately monitor radiocarbon 

(14C).“ 

RINGO Task 1.2 aims directly at providing additional information towards this missing element by testing and assessing 

urban radiocarbon sampling strategies. 

Radiocarbon observations have been applied in numerous urban CO2 studies before. To date, the best instrumented, 

monitored and documented urban emission experiment applying 14CO2 measurements is the INFLUX experiment in 

Indianapolis, USA (e.g. Turnbull et al., 2015). Among other approaches, INFLUX equipped 12 towers in and around 

Indianapolis with in-situ instrumentation for CO2 with a subset of the towers having regular flask sampling for 14CO2 

analysis. Turnbull et al. concluded that performing background measurements upwind of the emission area and 

accompanying downwind measurements in the emission plume of the hotspot are easier to interpret than 

measurements conducted in the centre of the emission area itself. For the interpretation of their results they 

successfully used the concept of a Lagrangian air-parcel, which is moving from the background station via the emission 
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area to the downwind measurement station. This Lagrangian approach became the blueprint for many other urban 

greenhouse gases (GHG) experiments (e.g. Los Angeles, Boston, Seoul, Auckland).  

RINGO Task 1.2 is based on the findings of the INFLUX and other urban observation networks, copying successful 

approaches and trying to address open questions on the urban network design, i.e. the 14CO2 sampling strategy, the 

influence of non-fossil 14CO2 contamination e.g. from nuclear facilities as well as more fundamental questions of the 

continental network design. RINGO Task 1.2 follows an experimental as well as a modelling approach to come closer 

to answering these questions, which are further detailed below. 

The experimental approach investigates potential synergies with the existing ICOS atmosphere monitoring station 

network, but with the new focus to better quantify urban ffCO2 emissions. The modelling approach aims to answer 

the question if an urban network would perform better in quantifying national fossil fuel emissions than the current 

ICOS network. To assess this, we will use an Observation System Simulation Experiment (OSSE, Wu et al., 2018).  

In terms of urban network development, Task 1.2 was not able to build up an entire ring of atmospheric stations 

around a city. Our aim was rather to investigate if existing ICOS atmosphere stations could be supplemented by 

dedicated adjoined partner stations to better constrain urban emission areas located in between the two or more 

stations on opposing sides of that city. In the following we call this the RINGO approach. If this attempt is successful, 

one could consider supplementing suitable ICOS atmosphere stations with adjoined RINGO stations. Such dual use of 

the ICOS atmosphere infrastructure could significantly improve the network’s sensitivity towards monitoring fossil CO2 

emissions. We experimentally tested this approach for three urban regions: Paris, Rotterdam and the Rhine Valley 

near Heidelberg and we applied 14CO2-based fossil fuel estimates to experimentally separate regional fossil (ΔffCO2) 

from biogenic CO2 enhancements. In addition to the basic question whether the RINGO approach is capable of 

quantifying ΔffCO2, we use this study to further investigate fundamental questions and challenges of 14CO2-based fossil 

fuel estimates. 

One re-occurring question of 14CO2 sampling strategies concerns the measurement of the 14CO2 background. Turnbull 

et al. (2015) showed that the estimated ffCO2 share in the total CO2 enhancement of the emission plume changed 

between 50 and 100% depending on the used background station. While Turnbull et al. showed that using a 

continental 14CO2 background station is not suited for urban observations in the US, we want to revisit this question 

for central Europe where the 14CO2 observation network of ICOS is much denser. Is it better to have direct 14CO2 

background measurements upwind of the city, or would it be better to have twice as many downwind 14CO2 

measurements while accepting a larger uncertainty in the 14CO2 background estimate? This question must also be 

discussed in view of non-fossil 14CO2 contaminations. In Europe, about 70 nuclear facilities are emitting pure 14CO2 

(Graven & Gruber, 2011; Zazzeri et al., 2018) therewith “masking” fossil fuel CO2 in the 14CO2-based approach. What 

is the magnitude of the nuclear contaminations in the RINGO approach and can they be avoided? Secondly, additional 

ffCO2 masking originates from biogenic respiration. Organic material which accumulated bomb radiocarbon in the last 

decades, is now partly releasing this 14CO2 back to the atmosphere. Is this a significant source of uncertainty for the 
14C-based fossil fuel CO2 estimates? 

One further question of continental network design goes beyond the urban scale and asks if the ICOS radiocarbon 

samples as a whole would yield better estimates of national fossil fuel CO2 emissions if they all would be sampled 

closer to emission areas? What is the benefit of the two weekly integrated samples for this national estimate? These 

questions were the motivation behind the search of an optimised 14CO2 sampling strategy for ffCO2 emissions from 

urban areas in RINGO Task 1.2.  

This deliverable report summarizes the findings of the experimental and modelling approaches, addresses 

achievements as well as shortcomings and concludes with requirements for an urban fossil fuel CO2 observation 

system. 
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2 RESULTS FROM THE EXPERIMENTAL OBSERVATIONAL STUDIES 

In the following, we summarize the results from the experimental studies. A more detailed discussion of the results 

can be found in Rieß (2019) and Kneuer (2020). 

2.1 City selection and experimental setup 
As outlined in the introduction, the aim of the experimental part in Ringo Task 1.2 was the observation of the regional 

fossil fuel CO2 concentration enhancements of three European cities by applying the 2-station RINGO approach as 

“urban network”. In the first project phase, Paris, Rotterdam and the Rhine Valley were selected as test regions. All 

three metropolitan areas have an ICOS atmosphere station or an ICOS pilot station nearby. Saclay tower (SAC) 

southwest of Paris, Cabauw tower (CBW) east of Rotterdam and the ICOS-CRL pilot station in Heidelberg southeast of 

Mannheim/Ludwigshafen in the Rhine Valley. The selection of cities ranges from the megacity Paris (10M inhabitants) 

down to the medium-sized metropolitan region of Mannheim/Ludwigshafen (0.5M inhabitants). The RINGO approach 

builds on the Lagrangian air mass transport as many other urban networks. The basic assumption of the approach is 

that an air mass is sampled twice, once before it crosses the emission area and once after, while the boundary layer 

mixing conditions should not change significantly from upwind to downwind sampling. To apply this approach in 

RINGO, additional atmospheric observing stations had to be built for Rotterdam and the Rhine Valley. 

In Rotterdam the new station Maasvlakte (MAS) is located at the coast of the Port of Rotterdam, inside a building of 

the Port Authority located on top of a 15 m-high hill measuring CO2 and CH4 continuously. With westerly wind, MAS is 

located directly upwind of the Rotterdam sea port and about 30 km from the city centre. The ICOS station Cabauw 

(CBW) will then act as the downwind station and is 40 km downwind from the city centre. For the Rhine Valley, we 

chose a location near Freinsheim (FRE), which is surrounded by vineyards and has very little local ffCO2 emissions. FRE 

is located on a small hill, has a 10 m intake mast and is equipped with continuous CO2, 222Rn and meteorology 

measurements. A detailed description of the Freinsheim station including a thorough measurement quality 

assessment is given in Rieß (2019). The locations of MAS and FRE were chosen along a straight line between the existing 

ICOS stations and the targeted cities, so that the urban emission areas are located in between the two stations. In 

Paris, no additional atmospheric station was necessary since the existing station in Gonesse (GNS) (64 m intake height, 

continuous CO2, CO and CH4 measurements) is suitably located northeast of Paris. When choosing the upwind station, 

it is very important to avoid locations with local ffCO2 or nuclear 14CO2 sources in the inflow sector of the upwind 

station. Figure 1 shows maps of the three urban regions with the locations of the ICOS stations and the adjoined 

partner station. 

At the start of the project, only the ICOS-CRL pilot station was equipped with an ICOS flask sampler. Therefore, UHEI 

has built three custom made flask samplers that allow integrated air sampling over one hour or more (Kneuer, 2017; 

Rieß, 2019), two samplers for Paris and one for Freinsheim. RGU has built two flask samplers for the Rotterdam area. 

Due to delays in the construction of the flask samplers, the Rhine Valley and the Paris experiment were delayed, 

starting operation in October 2018 and April 2019, respectively. The flask sampler construction at RUG was also 

delayed and sampling for Rotterdam started in January 2019. By the end of the project, 136 14CO2 samples were 

collected and analysed for the Rhine Valley, 91 samples in Paris and 46 samples for Rotterdam. Due to the Covid-19 

lockdown and related work restrictions in spring 2020, experimental work at the stations became more difficult or 

even impossible, so only a few samples could be collected during this period. 

2.2 Fossil fuel estimation and sampling strategy  
Regional 14C-based fossil fuel CO2 estimates ΔffCO2 are based on differential 14CO2 measurements between a 

background and the downwind station according to Eq.1 adopted from Levin et al. (2011):  

 

Δff𝐶𝑂2 =  
CO2,bg(Δ 𝐶𝑏𝑔−Δ 𝐶 𝑏𝑔 𝑛𝑢𝑐

14 −Δ 𝐶𝑏𝑖𝑜) 1414  − CO2,dw(Δ 𝐶𝑑𝑤−Δ 𝐶𝑑𝑤 𝑛𝑢𝑐
14 −Δ 𝐶𝑏𝑖𝑜) 1414

Δ 𝐶𝑏𝑖𝑜 + 1000 14 ‰
  (1) 
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where CO2,x and Δ14Cx are the measured CO2 concentration and its corresponding radiocarbon 14C/C ratio expressed 

in Δ notation according to Stuiver and Polach (1977), for either the background (bg) or the downwind station (dw). 

Δ14Cx nuc accounts for the 14CO2 contamination from nuclear facilities and Δ14Cbio is the Δ14C signature of the biogenic 

respiration flux.  

 

Figure 1: Location of the ICOS atmosphere (SAC, CBW and HEI) and the adjoined RINGO stations (GNS, MAS and FRE). 

The colour code in the lower column represents ffCO2 emissions according to the TNO emission inventory on a 6 km 

by 6 km grid (Granier et al., 2019). Map data copyrighted OpenStreetMap contributors and available from 

https://www.openstreetmap.org  

 

The Lagrangian approach assumes that both measurements were made on the same air mass before and after it had 

travelled over the targeted source area. Thus, in the course of the project UHEI developed an automated trajectory 

warning system based on the projections of the COSMO–D2 weather forecast model of the German Weather Service. 

This trajectory forecast was provided for all three test regions via automated email alerts and allowed automated flask 

sampling for the UHEI-built samplers. The trajectory warning system is described in more detail in Rieß (2019). In order 

to identify samples collected during potentially large changes in the atmospheric mixing conditions between the up- 

and downwind sampling, additional information on the stability of the boundary layer has been taken into account 

when evaluating the measurements. In the Rhine Valley and for Paris, the stability of the mixing conditions was 

ensured based on only small changes in the 222Rn activity concentration during the transect period. For a subset of the 

Paris samples the stability of the mixing conditions could be derived from the GHG profile information at the ICOS 

atmosphere tower at SAC. Unfortunately, this information was not available for all Paris samples. While we selected 

the sample pairs according to these criteria we did not follow a strict time window during sample collection; but it 

turned out that the majority of the selected samples was from the afternoon period. Such a strict sample selection is 

especially important for the experimental determination of ΔffCO2 as will be explained in sec. 2.6. 

2.3 Is the RINGO approach suitable to sample urban ffCO2 enhancements (ΔffCO2)? 
In this report, we focus on those data, which approximate constant mixing conditions best. More details on the 

selection process can be obtained from Kneuer (2020). To address the question if the RINGO approach allows detecting 

https://www.openstreetmap.org/
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ΔffCO2 with sufficient precision, Table 1 lists the observed fossil fuel concentration enhancements for Paris, Rotterdam 

and the Rhine Valley derived using the RINGO approach. ΔffCO2 between an adjoined station and the neighbouring 

ICOS stations range from 0 to 10 ppm for the Rhine Valley with a median of 4 ppm. For Rotterdam we find ΔffCO2 at 

CBW between -3 ppm and 8.9 ppm with a median of 1.4 ppm. For Paris we listed the results for the two wind-directions, 

from Paris to SAC or from Paris to GNS separately with always the other station acting as background station. At GNS 

station we observe higher mean ΔffCO2 concentrations of 13.6ppm (3.3 to 61 ppm with a median of 6.6 ppm) than in 

the opposite direction towards the SAC station with a mean ΔffCO2 concentrations of 9.4 (2.9 to 24 ppm with a median 

of 9.3 ppm). The reasons for the large variability in ΔffCO2 will be discussed in section 2.6.1. The different results for 

the two stations monitoring the Paris urban emissions illustrates that comparing ΔffCO2 enhancements can be 

misleading and atmospheric transport modelling is needed to estimate fossil fuel emissions. The observed fossil fuel 

concentration enhancements depend on numerous aspects concerning observation network geometry for example: 

source strength of the emission area, distance between sampling location and source area, sampling intake height, 

average mixing conditions during sampling etc. From an analytical point of view, high fossil fuel concentration 

enhancements are, however, favourable as the typical uncertainty for ΔffCO2 is 1.2 ppm.  

Interestingly, the observed RINGO ΔffCO2 are larger than those found in the INFLUX experiment for the towers 2, 3 

and 9 (Turnbull et al., 2015). Tower 3 is located directly in the city centre of Indianapolis while tower 2 is downwind at 

the city border and tower 9 is located 24 km further downwind the city centre. A clear relation between the ΔffCO2 

signal and the distance of the towers from the emission area can be seen. Although INFLUX is a dedicated urban 

observation network, the applied conditional sampling strategy is much less restricted compared to our RINGO 

approach and is based on local wind direction only. The trajectory forecast-based sampling and the criteria to best 

approach constant mixing conditions lead to higher median ΔffCO2 and thus to a lower share of ΔffCO2 signals below 

detection limit. In summary, the RINGO approach yields observed fossil fuel enhancements, which are suitable to study 

urban emissions and are comparable to dedicated urban observation networks. 

 

Table 1: Comparison of the observed ffCO2 enhancements in the three RINGO areas with those from INFLUX. For the 

Rhine Valley and Rotterdam only the observation direction from FRE to HEI and from MAS to CBW were evaluated. The 

bottom lines show the median ffCO2 enhancements observed for three towers in the INFLUX experiment according to 

Turnbull et al. (2015). 

 Distance to 
city centre 

[km] 

Obs. 

height 

[m] 

ffCO2 enhancement [ppm] Obs. below 

detection 

limit mean median min max 

RINGO Rhine Valley to HEI 18 30 4.1 4.0 -0.1 10.2 16% 

Paris to GNS  18 64 13.6 6.6 3.3 61 0% 

Paris to SAC  18 60/100 9.4 9.3 2.9 24 0% 

Rotterdam to CBW 30 200 2.0 1.4 -3 8.9 11% 

INFLUX Tower 2 direct downwind 12 134  1.5   30% 

Tower 3  city centre 0 54  2.7   30% 

Tower 9  24 km downwind 24 130  0.1   60% 
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2.4 How large is the influence of 14CO2 contaminations on ΔffCO2? 
Although 14C is the most direct tracer to experimentally determine regional ffCO2 enhancements, it also has its caveats. 
14CO2 emissions from nuclear facilities can substantially increase the regional atmospheric 14CO2 content, masking 

thereby the depleting effect of fossil fuel CO2 emissions. A similar masking occurs from biogenic respiration fluxes as 

currently decomposed organic matter has conserved bomb radiocarbon, which was accumulated by the plants during 

the 14C-bomb-spike period from about 1954 to 2000 (Palonen et al., 2017). While it is not trivial to quantify these 14C 

contamination effects, it is even more challenging to assess their uncertainty. In the following, we want to discuss the 

magnitude and the temporal variability of both contamination effects starting with the biogenic respiration fluxes. 

 

2.4.1 14CO2 effect of biogenic respiration 
Any CO2 exchange flux between carbon reservoirs is subject to isotopic fractionation. The fractionation of 14C is thereby 

approximately twice the fractionation of 13C (Mook & Rozanski, 2000). The Δ-notation in which the 14C/C ratio is 

generally reported takes advantage of this and standardises the ratio to a uniform δ13C value of -25‰. Every 

fractionation that actually occurs when CO2 is transferred from one reservoir to another is thus eliminated in the Δ-

notation and all 14C values when reported as Δ14C, no matter from which reservoir, are directly comparable to each 

other. Note that, in this study, as is common in atmospheric radiocarbon publications, we use the term Δ14C instead 

of the Δ which was originally defined in Stuiver and Polach (1977). 

Photosynthetic uptake of CO2 by plants, although strongly fractionating carbon isotopes, in the Δ14C notation has, no 

effect on atmospheric Δ14CO2 as all fractionation effects have been taken care of in the 13C normalisation. The same is 

true for CO2 respiration fluxes if the biosphere and the atmosphere are in isotopic equilibrium. However, due to the 

atmospheric nuclear bomb tests mainly in the 1950s and 1960s the atmospheric 14C/C ratio in CO2 was almost doubled 

(Levin et al., 2010), and is still in disequilibrium with the biogenic 14C/C ratios (Palonen et al., 2017). The resulting 

disequilibrium flux leads to an enhancement of Δ14C in atmospheric CO2. In Kneuer (2020) an entire chapter is 

elaborating on this disequilibrium, here we want to summarise the main findings by analysing the effects of the 

biogenic disequilibrium on the atmospheric ∆14CO2 in Heidelberg for a summer period where biogenic fluxes are 

largest. 

The upper part of Figure 2 shows the modelled CO2 contribution from respiration and photosynthesis fluxes for a 

typical summer period (19.06.2018 to 30.06.2018) at the ICOS-CRL pilot station in Heidelberg. We used the Vegetation 

Photosynthesis and Respiration Model (VPRM) to estimate respiration and photosynthesis fluxes separately and 

applied a combination of the Weather Research and Forecasting model (WRF) and the Stochastic Time-Inverted 

Lagrangian Transport model (STILT) to transport the CO2 emissions to the measurement station. In this example period, 

the biogenic CO2 concentration changes range from -20 to +30 ppm. The lower part of Figure 2 shows the resulting 

atmospheric ∆14CO2 variations due to the biogenic contributions. For this calculation, ∆14Cbg of background air was set 

to -3 ‰. We investigated the influence of different respiration signatures ∆14Cres by varying them between 10 ‰ and 

100 ‰. As the intrinsic normalisation of the ∆-notation corrects for 14C fractionation effects, photosynthesis has no 

effect on the atmospheric ∆14CO2, bio ratio. However, the respiration signal causes a non-zero effect on atmospheric 

∆14CO2 signature due to the 14C disequilibrium. The shape of the atmospheric ∆14CO2, bio contribution is determined by 

the CO2 respiration signal. The influence of ∆14CO2, bio is highest during night-time when the planetary boundary layer 

is shallow and respiration CO2 accumulates. Depending on the ∆14Cres signature of the biosphere, respiration can cause 

a diurnal cycle in atmospheric ∆14CO2, bio of up to 6 ‰. The weighted ∆14Cres signature of the biosphere depends on the 

mean age of the decomposed biogenic material. Following the approach from Naegler and Levin (2009) using a three-

box biosphere model with different turnover times we estimate a mean ∆14Cres signature of about 50‰ for the year 

2018. The diurnal amplitude of atmospheric ∆14CO2, bio would thus be up to 3‰. The atmospheric ∆14CO2, bio effect 

during well-mixed afternoon conditions is smaller than a few tenth of a ‰ even if ∆14CO2, res is 100‰ because the 

contribution of the respiration signal to the atmospheric CO2 concentration is only small during these times. These 

model simulations have been conducted for the ICOS-CRL pilot station and an intake height of 30m. The atmospheric 

∆14CO2, bio effect will be smaller at towers with higher intake heights. For the 100m intake level at SAC tower we found 

the ∆14CO2, bio effect to be about 30% smaller than in HEI. For the RINGO approach we can, thus, conclude that sampling 
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during well-mixed afternoon conditions will minimize the influence of the respiration signal to well below 0.5‰. 

Sampling the up- and downwind flask during changing mixing conditions can, however, lead to significant ∆14CO2, bio 

effects resulting in up to about 1 ppm ffCO2 biases.  

 

 

Figure 2: Biogenic CO2 contributions at the HEI station in summer. The upper plot shows respiration (blue), 

photosynthesis (orange) and net (green) components of the biogenic contributions according to VPRM biogenic fluxes 

transported via WRF-STILT to the measurement station. The lower plot shows the resulting signals in atmospheric 

∆14CO2 from respiration only at the HEI station. Different colours represent different biosphere ∆14CO2, res respiration 

signatures. 
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2.4.2 14CO2 contamination by nuclear facilities 
14CO2 emissions from nuclear facilities are known to contribute significantly to the atmospheric 14CO2 budget and alter 
14C-based ffCO2 estimates by masking a certain share of the 14C-based ffCO2 (Levin et al., 2003; Graven and Gruber, 

2012; Kuderer et al., 2018). For the flask samples taken in the Rhine Valley and in Paris, we estimated the nuclear 14CO2 

influence using STILT. To estimate the uncertainty of the nuclear correction we additionally used WRF-STILT with 

higher spatial resolution and different meteorology for a subset of flasks. The annual mean 14CO2 emissions for all 

European nuclear facilities were taken from the European RAdioactive Discharges Database (RADD, 

https://europa.eu/radd/). The temporal variations of these 14CO2 emissions are, however, not reported. Based on 

monthly emission data from one nuclear power plant close to Heidelberg taken from Kuderer et al. (2018) we deduce 

an average monthly root mean square deviation of 36% for the 14CO2 emissions from the long-term mean. Individual 

months may, however, deviate by up to 135%. Kuderer et al. (2018) found no significant correlation of 14CO2 emissions 

with the power produced. Thus we assume the mean uncertainty of the emission data as 36% and express here the 

strong need for temporally highly resolved 14CO2 emission data from all nuclear facilities in Europe if this uncertainty 

shall be reduced. For the time being, we calculated the nuclear ∆14CO2, nuc contamination for the Rhine Valley and for 

Paris according to Eq. 2 based on reported annual emissions: 

Δ 𝐶𝑂2,𝑛𝑢𝑐  [‰] =  
0.97  𝑄14𝐶 𝐹

𝑋𝐶𝑂2
 𝑀𝐶 𝐴𝐴𝐵𝑆

⋅ 1000   14    (2) 

The factor 0.97 accounts for the 13C normalisation in the ∆-notation, Q14C is the nuclear 14CO2 emission in Bq/(m²s). 

The RADD database provides nuclear 14CO2 emissions in Bq/a for each nuclear facility. We assign these point source 

emissions to 1 m² in order to convert point- to areal emissions to become compatible with the footprint concept. Mc 

is the molar mass of carbon, AABS = 0.226 Bq/gC the specific 14C standard activity defined in Stuiver and Polach (1977), 

F the modelled footprint sensitivity in ppm/(µmol/(m2s)) and XCO2 the CO2 mole fraction in ppm. More details on the 

nuclear correction can be found in Kneuer (2020). 

We estimated nuclear corrections for the three hours bracketing the actual flask sampling hour to assess the temporal 

variability of the nuclear corrections. The average nuclear 14CO2 contamination for all flask samples in the Rhine 

Valley is 1.1 ‰, ranging from 0.0 ‰ to 11.2 ‰ for individual flasks, whereas for Paris the average nuclear 

contamination is 0.6 ‰ ranging from 0.0‰ to 4.9‰. For both cities, the nuclear corrections for up- and downwind 

flasks of one pair are well correlated with R²=0.89 for the Rhine Valley and R²=0.73 for Paris; the slope of the regression 

between the up- and downwind Δ14CO2,nuc is 0.96±0.08 for the Rhine Valley and 0.91±0.08 for Paris. The good 

correlation between the nuclear corrections for the up- and the downwind sample is expected because in the 

Lagrangian approach both samples were collected from the same air mass and the most important contaminating 

sources are located far away from the sampling stations. 

The uncertainty of the nuclear contaminations has two main components. First the uncertainty in the nuclear 14CO2 

emission σ(Q14CO2) and secondly the uncertainty in the footprint sensitivity σ(F). As discussed before there is no 

sufficiently, temporally resolved emission data Q14CO2 available to assess their uncertainties. We thus assume 36% 

uncertainty for the time being. The uncertainty σ(F) of the footprint sensitivity can be assessed by comparing results 

from different transport models. Figure 3 shows two estimates of the ∆14CO2, nuc contamination for a flask collected in 

Heidelberg on March 1st, 2019, 18:00 based on a STILT and a WRF-STILT footprint. While the WRF-STILT footprint 

results in ∆14CO2, nuc = 0.6‰, the STILT footprint predicts ∆14CO2, nuc = 8.2‰ for this specific hour. 

  

https://europa.eu/radd/
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Figure 3: Footprints for one flask sampled in HEI on March, 1st, 2019, at 18:00h. The blue dots in each map show the 

positions and the annual emission strengths of individual nuclear facilities as listed in the RADD inventory. The map on 

the left shows a WRF-STILT footprint with a 72h backward trajectory. In the map on the right, the 240h backward 

calculated footprint from HEI using STILT is shown. 

The largest difference between the two models in this example is the duration of the backward calculated footprint. 

While WRF-STILT used 72h, STILT used 240h. Adding to that, the two models differ in spatial resolution and the 

meteorology used. In Fig. 3 also the annual nuclear 14CO2 emission flux Q14CO2 on a facility level is shown for the 

European domain. The single largest 14CO2 source in Europe is the reprocessing plant La Hague in north-western 

France. For all Rhine Valley and Paris flask samples the magnitude of the calculated ∆14CO2, nuc contamination largely 

depends on the question if the reprocessing plant at La Hague had a significant contribution to the contamination 

signal or not. This also explains why on average ∆14CO2, nuc contamination for Paris was smaller compared to the Rhine 

Valley. The Paris RINGO setup sampled during wind directions from southwest to northeast or vice versa, whereas for 

the Rhine Valley experiment we only sampled during north-westerly winds. Thus, the Rhine Valley, although further 

distant is more sensitive to La Hague emissions than the Paris stations. 

Figure 4 shows the comparison of ∆14CO2, nuc contaminations calculated with footprints from both models for 11 

individual samples. The example discussed above (Fig. 3) is flask #5. Each ∆14CO2, nuc contamination is the average of 

individual ∆14CO2, nuc contaminations at the hour as well as one hour before and after the actual sampling time, thus 

accounting for a temporal uncertainty in the footprints. The uncertainties of the averaged ∆14CO2, nuc contaminations 

in Fig. 4 are the standard deviations of the three individual ∆14CO2, nuc estimates. The samples were selected such that 

they contain the highest and the lowest ∆14CO2, nuc contaminations predicted by STILT for Rhine Valley samples. 
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Figure 4: Comparison of the ∆14CO2, nuc contaminations calculated for 11 flasks collected in the Rhine Valley covering 

the whole range of 14CO2, nuc contaminations in our samples. Estimates shown in black are based on STILT footprints 

(240h). Red dots represent estimates based on WRF-STILT footprints (72h). Nuclear emissions are based on RADD. Error 

bars represent the standard deviation of the 3 hours bracketing the actual sampling hour. For comparison, the blue 

dashed line gives the typical analytical uncertainty of a single Δ14CO2 measurement. 

 

In spite of the different model configurations, the calculated ∆14CO2, nuc contaminations agree within their uncertainties 

for all flasks, except for flask #5 discussed above. The average root mean square difference between WRF-STILT and 

STILT ∆14CO2, nuc contaminations is 3.1‰ for all flasks and 0.7‰ excluding flask #5. From this finding, we can 

preliminarily conclude that the uncertainty of the footprint sensitivity (F) is small compared to the measurement 

uncertainty as long as major 14CO2 emitters in the footprint are avoided. This conclusion is by no means final and has 

to be reproduced with a larger set of individual flasks and especially with a larger ensemble of transport models 

including plume dispersion models. Still, the preliminary conclusion has direct consequences on the design of urban 

observation networks (namely avoid large 14CO2 emitters upwind of the city) and on the sample selection during the 

monitoring process (i.e. calculate potential NRT 14CO2 contaminations before processing flask samples as 14C analysis 

are expensive). In Figure 5 we investigate the ∆14CO2, nuc impact of a potential 0.1 TBq/a 14CO2 emitting nuclear facility 

at various distances from a sampling station. For this experiment we distributed five 0.1 TBq/a 14CO2 emitting nuclear 

facilities upwind of the HEI station at distances of 20 km, 50 km, 100 km, 200 km and 400 km. For 32 RINGO situations 

we used STILT footprints to calculate the ∆14CO2, nuc contaminations from each nuclear facility separately and plot the 

average ∆14CO2, nuc contaminations along with its standard deviation in Fig. 5 for each nuclear facility separately. The 

∆14CO2, nuc contamination drops exponentially with increasing distance between the nuclear facility and the sampling 

station. To minimise the nuclear contamination, we suggest a minimum distance of 70 km to 100 km for a 0.1 TBq/a 

emitting nuclear facility in the main RINGO upwind direction. The ∆14CO2, nuc contaminations scale linearly with the 

emission strengths. These findings have been derived for one single station. As discussed above the two-station 

approach is less sensitive to ∆14CO2, nuc contaminations as these are partly intrinsically corrected for in the RINGO 

approach.  
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Figure 5: Average ∆14CO2, nuc contamination at different distances from the station. The contaminations from five 

individuals 0.1 TBq/a 14CO2 emitting nuclear facilities at distances of 20 km, 50 km, 100 km, 200 km and 400 km upwind 

from the station in main wind direction are shown. Each point denotes the average and the standard deviation of the 

∆14CO2, nuc contamination for 32 RINGO situations in HEI. 

Coming back to the question of nuclear contamination influencing the ability to derive 14CO2 based ffCO2 estimates in 

Europe, we have seen that the majority of flasks has only a small nuclear contamination on the order of 1‰. These 

flasks show no dominant influence from one specific nuclear facility and thus the uncertainty of the footprint sensitivity 

σ(F) is less critical. If this average nuclear contamination is associated with a 36% uncertainty contribution from the 
14CO2 emission, the resulting estimated nuclear contamination is still on the order of the typical uncertainty of Δ14CO2 

flask measurements of about 2‰. In the Lagrangian two-station approach, a large share of the contamination is 

intrinsically corrected for, as long as the nuclear 14CO2 emitters are not too close to the sampling locations. As we have 

shown above the correlations between the nuclear ∆14CO2, nuc contaminations for the up- and the downwind station 

are strong with slopes close to 1. 
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2.5 Can upwind Δ14CO2 measurements be substituted by regional background Δ14CO2 

observations? 
As the experimental 14C-based ffCO2 estimates rely on differential 14CO2 measurements (see Eq. 1) the Lagrangian up- 

and downwind approach needs two 14CO2 measurements for one ffCO2 estimate. There is no doubt that the direct 

upwind measurement is the most direct approximation of the background for urban scale measurements. In the last 

section, we pointed out the strong advantage of the intrinsic correction for nuclear 14CO2 contaminations. However, 

an important question regarding the sampling strategy is how much the uncertainty of the ΔffCO2 estimate increases 

if the upwind 14CO2 measurement is substituted by a larger-scale regional background measurement. The benefit of 

using a regional 14CO2 background would be that the number of downwind samples could be doubled at no additional 

flask analysis costs. We assessed this question from an experimental as well as from a modelling perspective. The 

modelling perspective is discussed in Sec 3.6.1. 

To answer the background question from the experimental point of view, we replaced the upwind flasks by a regional 

Δ14CO2 background and then investigated the resulting changes in the estimated ΔffCO2 and its uncertainty. For all 

data, including the regional background measurements, we apply the nuclear ∆14CO2, nuc contamination corrections. 

Due to lacking heterotrophic respiration model results for the entire observation period we could not apply individual 

corrections for the respiration 14CO2 contribution. The regional background estimates are harmonic fits to 2-week 

integrated Δ14CO2 measurements from regional background stations. We used Trainou station and Schauinsland 

station as regional backgrounds for Paris and the Rhine Valley, respectively. Trainou station is a tall tower about 100 

km south of Paris. A detailed description of Trainou tower station is given in Schmidt et al. (2014). At Trainou, 

integrated 14CO2 samples are collected from a height of 180 m above local ground. The Schauinsland station is located 

approximately 180 km south of the Mannheim/Ludwigshafen area and at 1205 m a.s.l. at the border of the Rhine 

Valley in the Black Forest. The Schauinsland station is characterised e.g. in Levin et al. (1995). During winter 

Schauinsland is often located above the Rhine Valley inversion, whereas during summer, emissions from the Rhine 

Valley frequently reach the station, particularly during the day. 

Figure 6 shows the nuclear corrected Δ14CO2 measurements for Paris as well as for the Rhine Valley. The nuclear 

corrected regional background measurements and a harmonic fit according to Nakazawa et al. (1997) through the 

background data are included in both plots. For TRN station the available 2-week integrated measurements end in 

autumn 2019 thus the fit had to be extrapolated based on its slope and seasonality in the years before. For both target 

areas, the nuclear corrected up- and downwind measurements from the RINGO flasks are given in green and blue, 

respectively. The open grey symbols in Figure 6 show the original uncorrected flask results. For the majority of the 

flasks the nuclear ∆14CO2, nuc correction is only small (cf. Fig. 4) and thus not visible. The observational period is roughly 

divided into a “growing” (May to October) and a “dormant” (November to April) season.  

We estimate the additional uncertainty of using a regional background instead of upwind samples by the standard 

deviation of upwind flask results from the regional background curve. Table 2 lists the median difference and the 

standard deviation of the differences for both stations, separately for the growing and the dormant season. The 

median difference is positive at both sites and seasons, i.e. the upwind flasks are higher in Δ14CO2 and thus contain 

less ffCO2 compared to the regional background. Generally, this is not surprising as the 2-week integrated background 

measurements are not selected for clean air conditions and thus comprise the averaged fossil fuel signal at these 

stations. Levin et al. (2008) showed that Schauinsland exhibits a ffCO2 enhancement with respect to the continental 

background at Jungfraujoch of about 1 ppm during summer and twice as much during winter because Rhine valley air 

is much more polluted with ffCO2 during winter than in summer (Levin et al., 2003; 2011). However, it is difficult to 

understand why the upwind flasks deviate more from the regional background during the growing than during the 

dormant season. One reason could be a stronger respiration Δ14CO2 enrichment in the flask samples during the growing 

than during the dormant season (see Sec. 2.4. and Fig. 2). However, as the majority of flask samples was taken during 

afternoon hours, their respiratory 14CO2 effect will probably be lower compared to that of the 2-week integrated 

samples at the regional background stations, which integrate over the entire diurnal cycle and thus contain more night-

time respiration CO2. The origin of the larger deviations during the growing season compared to the dormant season 

thus currently remains an open question and must be revisited once a larger number of samples from the growing 

season are available. 
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Table 2: Deviation between the upwind flasks and the regional background fits (flask-fit) for the Rhine Valley and Paris 

separated into dormant and growing season.  

 
Dormant season deviation: 

median ± std. dev. 

Growing season deviation: 

median ± std. dev. 

Rhine Valley 1.1 ± 4.2‰ 7.6 ± 4.1‰ 

Paris 1.7 ± 5.2‰ 4.0 ± 2.9‰ 

 

Figure 6: Δ14CO2 results for the Rhine Valley and the Paris test area. 2-week integrated, nuclear corrected, regional 

background measurements together with their uncertainties are shown as grey step plot. Schauinsland measurements 

are used for the Rhine Valley and Trainou measurements for Paris. The regional background fit is given as solid black 

line. Nuclear corrected Δ14CO2 measurements of the upwind- and downwind stations are given in green and blue 

respectively. Original uncorrected Δ14CO2 measurements are shown as open grey symbols but are only visible for those 

samples which exhibit a significant nuclear Δ14CO2, nuc correction. Also, the uncorrected background fit is given as thin 

dashed grey line. The separation into growing (May-Oct) and dormant (Nov- April) season is indicated along the x-axis. 
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If we concentrate on the additional uncertainty when substituting the upwind flasks by a regional background, we 

have to compare the uncertainty budgets of the different 14C-based ΔffCO2 approaches. Table 3 compiles the 

uncertainty budgets for both background realisations. Hereafter, we will first motivate the uncertainty assumptions 

for the Lagrangian up-/downwind approach followed by the uncertainty budget for the regional background approach. 

In the Lagrangian approach, the uncertainty of the background Δ14CO2 estimate is given by the long-term 

reproducibility of the 14CO2 flask measurements. In section 2.4, we further elaborated on the advantage of the 

Lagrangian approach to intrinsically correct for the nuclear contaminations. We thus estimate that the remaining 

model uncertainty σ(F) in the RINGO approach is half of the total nuclear correction of each flask. In addition, we do 

not account for the uncertainty in the nuclear emission strength as this would affect the up- and the downwind 

measurement in the same way. The respiration Δ14CO2, bio effect depends on the times of sampling of the flask pair. If 

the flasks are samples during changing mixing conditions e.g. during the disintegration of the nocturnal boundary 

layer, the respiration effect can be as large as 3‰. Sampling during well mixed afternoon conditions will result in a 

Δ14CO2, bio effect of less than 0.5‰.  

The largest difference in the uncertainty budget of the regional background approach compared to the RINGO 

approach arises from the uncertainty of the background estimate itself. The spread of the upwind flasks around the 

regional background fit is between 4‰ and 5‰ for the dormant season in the Rhine Valley and also in Paris (Table 2). 

As the 2-week integrated samples incorporate the averaged Δ14CO2, bio effect. The difference in the Δ14CO2, bio effect 

between the regional background and the individual downwind sample depends thus on the sampling time of the 

flask. During well-mixed afternoon conditions the difference will be on the order of -1‰ whereas it can be also around 

+2‰ for samplings during inversion periods. In principle the Δ14CO2, bio effect can be corrected similarly to the nuclear 

contamination if the respiration contribution at the measurement station is known from model estimates (cf. Fig. 2). 

Thus, we assume an additional uncertainty contribution of 0.5‰ here for the respiration effect, which is 50% of the 

total respiration effect during well mixed conditions.  

The uncertainty of the nuclear correction with the regional background is assessed in two parts. The uncertainty 

related to the transport errors is assessed via the difference between the two transport models as shown in Fig. 4. The 

average difference between the two modelled nuclear corrections is 4‰ if all samples are taken into account but 

reduces to 1‰ if only samples are considered where the nuclear correction of both models agree within their 

uncertainties. This implies that the nuclear correction is routinely calculated using two different transport models, 

allowing to assess the transport model uncertainty. For the 11 flask samples where we compared two different 

transport models only the nuclear correction for one flask, which was directly influenced by La Hague in one model, 

did not agree between the models. The second nuclear correction uncertainty contribution is related to the varying 
14CO2 emission strength. On a monthly basis the variability was shown to be on average 36% based on the monthly 
14CO2 emission data taken from Kuderer et al. (2018). Thus we assume the emission strength uncertainty to be 36% of 

the average nuclear correction. 

Coming back to the question of nuclear contamination influencing the ability to derive 14CO2 based ffCO2 estimates, 

we have seen that the majority of flasks has only a small nuclear contamination on the order of 1‰. These flasks show 

no dominant influence from one specific nuclear facility and thus the uncertainty of the footprint sensitivity σ(F) is less 

critical. If this average nuclear contamination is associated with a 36% uncertainty contribution from the 14CO2 

emission, the resulting estimated nuclear contamination is on the order of the typical uncertainty of Δ14CO2 flask 

measurements of about 2‰. In the Lagrangian two-station approach, a large share of the contamination is intrinsically 

corrected for, as long as the nuclear 14CO2 emitters are not too close to the sampling locations. As we have shown 

above the correlations between the nuclear ∆14CO2, nuc contaminations for the up- and the downwind station are strong 

with slopes close to 1. 

Besides the uncertainties we also investigated a potential bias of the ΔffCO2 estimates between the two background 

approaches. The ΔffCO2 estimates during the dormant seasons for Paris and the Rhine Valley can be seen in Fig. 7 for 

both background approaches. While for the Rhine Valley (black) no systematic average bias is found we observe that 

for Paris the regional background approach underestimates low ΔffCO2 concentrations systematically. 
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Table 3: Uncertainty budgets for the 14CO2-based ΔffCO2 approaches for two different backgrounds. The up-/downwind 

approach assumes direct flask measurement of the real background, whereas the regional background is estimated 

from integrated 14CO2 measurements from nearby clean ICOS stations. For the regional background approach, the 

uncertainty budget is split into all samples and those where both models agree in their estimate of the ΔffCO2, nuc 

correction. See text for a discussion of the uncertainty contributions.  

Uncertainties due to: Upwind / downwind 
approach 

Regional BG approach 
 

background estimate 2.1 ‰ 4 to 5 ‰ 

Downwind measurement 2.1 ‰ 2.1 ‰ 

Respiration effect 0.5 ‰ 0.5 ‰ 

nuclear contaminations  all 
both models 

agree 

Footprint model 14CO2nuc correction 0.5 ‰ 4 ‰ 1 ‰ 
14CO2 nuc emission strength (rel. err. 36%)  

n.a. 1 ‰ 0.5 ‰ 

Total 3.1 ‰ 
~ 1.1 ppm ffCO2 

6.8 ‰ 
~ 2.6 ppm ffCO2 

4.7 ‰ 
~ 1.7 ppm ffCO2 

 

  

Figure 7: Comparison of the regional background-based ΔffCO2 estimates with those based on individual upwind flasks 

during the dormant seasons for Paris (red) and the Rhine Valley (black). 

To conclude on the sampling strategy and background question from the experimental point of view, we summarise 

that even with careful selection to e.g. minimise the influence of nuclear contaminations in the downwind flasks, the 

uncertainty of the ΔffCO2 estimates is increased by more than 50% if a regional background is used. Let us assume in 

a thought experiment that the observations were repeated measurements of one constant emission source. In this 

case the doubled number of samples, which we would gain when using the regional background approach leads to a 

statistical error reduction of √2 for the the mean emission. This is less than the 50% uncertainty increase, which we 

would have to accept for each individual ΔffCO2 estimate from the target area, when using the regional background 

approach. It can be argued that simple Gaussian statistics are not valid in reality where we have non-constant 
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emissions. If, however, the regional background approach does not offer any advantage in the simplest case, it is more 

than questionable how to achieve an advantage in the more complex reality. From an experimental point of view, we, 

therefore, conclude that the ffCO2 concentration enhancements are anyhow small and further deterioration of the 

uncertainty is thus not advisable. We will revisit this question in chapter 3.6.1 from the modelling point of view. 

 

2.6 Which share of the observed ΔCO2 concentration gradient across a target area is of fossil 

origin? 
The main motivation for conducting 14CO2 measurements across a target area is to investigate which part of the total 

ΔCO2 concentration difference between the upwind and the downwind station is of fossil origin.  

2.6.1 Rhine Valley 
Figure 8 shows the ffCO2 enhancement across the Mannheim/Ludwigshafen area plotted versus the observed total 

ΔCO2 gradient for the dormant season only. Between both CO2 enhancements, we find a linear relation with a slope 

of 1.11 ± 0.17 and a correlation coefficient R²=0.80. 

 

Figure 8: Rhine Valley ffCO2 enhancement between FRE and HEI plotted versus the concurrent total CO2 enhancement 

during the dormant season. 

This principally confirms the findings by Turnbull et al. (2015) that during the winter season the major CO2 signal from 

the target region is of fossil origin, which is why total ΔCO2 can serve as a good proxy for ΔffCO2. However, for the 

Rhine Valley, we observe a rather constant shift in the observations in the x-direction with respect to the 1:1 line, 

showing an additional biogenic CO2 contribution between the two stations of about 2 ppm. The slope of 1.11 is 

indicating that the additional biogenic signal is reduced in situations with larger fossil fuel contribution. However, due 

to the uncertainty of the slope 1.11±0.17 this finding is not significant.  

The observed ΔffCO2 variability between 0 ppm and 10 ppm for the RINGO sampling events could be caused by three 

different reasons: a) changing ffCO2 emission strengths in the target region, b) different atmospheric mixing conditions 

or c) different contributions from the target region. We will now discuss the three different potential reasons. 

Changing ffCO2 emission strengths in the target area is unlikely to explain the entire observed ΔffCO2 variability. Given 

the fact that the main emission sources in the target area are a coal-fired power plant and a large chemical company, 

we assume fossil fuel emissions to be relatively constant. This assumption is also in line with temporal profiles of the 

ffCO2 emissions provided by the TNO emissions inventory for the target area in the Rhine Valley. Changing atmospheric 
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mixing conditions especially varying boundary layer heights are known to be a major driver of changing atmospheric 

concentrations in the boundary layer. In the example of Paris discussed below (Sec. 2.6.2), changing vertical mixing is 

actually the dominant cause of the ΔffCO2 variations. However, this is not the case for the Rhine Valley, since based 

on the 222Rn activity concentration measurements during the RINGO events we conclude that the vertical mixing has 

been stable and rather comparable between the different RINGO events. The mean Δ222Rn difference between the 

down- and upwind sampling for all sampling events is -0.1±0.6 Bq/m³. The sampling criteria ensured that all samplings 

were conducted during atmospheric situations with rather low absolute 222Rn activity concentrations (between 0.5 

and 1.8 Bq/m³) typical for well-mixed conditions. Thus, for the observations performed in the Rhine Valley we exclude 

changing vertical mixing as main driver for the observed ΔffCO2 variability. Lastly we discuss different contributions 

from the emission area as third potential reason for the variation. Although the trajectory-based sampling approach 

assures that up- and downwind station are on one trajectory, it does not ensure comparable contributions from the 

target region’s fossil fuel emissions for each trajectory. Visual inspection of all trajectories confirmed that events with 

low ΔffCO2 have only streaked the target region due to the curvature of the trajectory. In contrast, for high ΔffCO2 

events the trajectories passed over the centre of the emission area. This explains the observed variability in the ΔffCO2 

signal best. 

Observing an additional biogenic CO2 offset of about 2 ppm at the downwind compared to the upwind station is 

surprising. Therefore, we will now discuss an idealised thought-model for biogenic CO2 enhancements in the 

Lagrangian approach and the consequences on ΔCO2 if we deviate from the idealised assumptions. The simplest 

thought model assumes the biogenic sources are homogeneously distributed in space and time. Assuming constant 

atmospheric mixing conditions in addition, results in uniform biogenic CO2 contributions at both (all) stations and thus 

a vanishing biogenic ΔCO2 signal between two stations in the differential RINGO approach. One by one we will now 

discuss the simplifying assumptions and the consequences for biogenic ΔCO2 if we drop them. When dropping the 

spatial homogeneity condition, we need to compare the different biogenic fluxes in the catchment areas of the two 

stations. The upwind catchment area of the FRE station is dominated by multi-year vegetation mainly vineyards and 

forest and only little changing agriculture. The biogenic sources upwind of HEI station, and thus between FRE and HEI, 

are dominated by changing agriculture. During the dormant season, the NEE of multi-year forests (including soil 

respiration) is positive and larger than the NEE for agricultural land, which is close to zero for a region in Germany with 

a similar climate (Anthoni et al., 2004). From this, we would conclude that during the dormant season, the biogenic 

source strength is larger in the catchment area of FRE compared to HEI. A further effect is the sealing of natural 

surfaces in the urban target area, resulting in lower NEE fluxes in the catchment area of HEI as well. Thus, dropping 

the spatial homogeneity condition increases the biogenic CO2 contribution at FRE and thus results in negative biogenic 

ΔCO2 differences in contradiction to what is observed. Secondly, we discuss the assumption of the temporal 

homogeneity of biogenic fluxes. Kneuer (2020) calculated a mean diurnal cycle for biogenic CO2 contributions at HEI 

station based on VPRM and STILT model results for a 10 days’ period in the dormant season. The mean diurnal cycle 

shows the largest biogenic CO2 contribution of 6 ppm at 03:00h and a minimum of 4 ppm at noon, resulting in a 

temporal change of the biogenic CO2 contribution of 0.2 ppm/h. Assuming a similar biogenic diurnal cycle at both 

stations, we estimate the biogenic ΔCO2 difference caused by temporally changing fluxes to be less than 0.4 ppm if we 

apply the average travelling time of 1.7 hours for air masses between FRE and HEI. Besides that, although the majority 

of sampling events has been taken during the afternoon, some samples were collected during mornings with an 

opposite effect of the diurnal cycle on the biogenic ΔCO2 differences. The observations show however a very consistent 

positive bias of the biogenic contribution at the HEI station. Finally, we discuss the effects when dropping the 

assumption of constant mixing conditions. We divide this discussion into the one of reduced and the one of increased 

mixing while the air mass travels across the target area. Increased mixing leads to a smaller biogenic CO2 contribution 

in HEI compared to FRE, resulting in a negative biogenic ΔCO2 difference. Reduced mixing, however, leads to a larger 

biogenic CO2 contribution in HEI compared to FRE, resulting in a positive biogenic ΔCO2 difference. However, as 

discussed in the previous paragraph, the mean Δ222Rn difference of -0.1±0.6 Bq/m³ indicates that there have been no 

large changes in the mixing conditions during the sampling events. The almost constant biogenic CO2 offset of 2 ppm 

is therefore currently not understood, i.e. as long as we cannot identify an additional more or less constant non-fossil 

CO2 source in the Heidelberg catchment compared to the Freinsheim catchment.
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2.6.2 Paris 
Figure 9 shows the relation between total ΔCO2 and ΔffCO2 for Paris during the dormant season. The linear regression 

yields a slope of 0.98 ± 0.05 and a correlation of R²=0.96. Similar as for the Rhine Valley we also find a (biogenic?) ΔCO2 

offset of about 2 ppm for the Paris region. The observed ΔffCO2 range, between about 3 and 61 ppm, is much larger 

compared to the Rhine Valley. ffCO2 enhancements larger than 10ppm have been derived from sampling events during 

evenings and nights. Unfortunately, the Rn-based selection and data-screening process works less efficient in Paris 

compared to the Rhine Valley. This has two reasons: first 222Rn observations are only available at SAC and not at both 

stations. Second, 222Rn is measured at 100 m above local ground, lowering its sensitivity to changes in vertical mixing. 

Assessing the vertical atmospheric stability from CO2 profile measurements would have been a good alternative, 

however, only for a very small subset of the observations the profile information was available. Therefore, much of 

the ΔffCO2 variability for Paris is caused by differences in atmospheric mixing conditions. Fig. 10 shows a linear relation 

between the ffCO2 enhancement between SAC and GNS and the absolute 222Rn activity concertation at SAC. The two 

outliers, with high ΔffCO2 but low 222Rn concentrations, were sampled during situations where the 222Rn observations 

at 100 m in SAC were above the inversion layer. For one outlier 14CO2 was sampled in GNS at 60 m height while for the 

other outlier 14CO2 was sampled at 60 m height at SAC. Note that, in the first month the 14CO2 sampling at SAC was 

connected to the 60 m instead of 100 m level. 

The almost 1:1 relationship between total and fossil CO2 enhancements is striking and underpins the dominance of 

fossil emission sources during the dormant season in the Paris target region. Although, our conclusions on atmospheric 

mixing conditions in Paris are less accurate due to the less sensitive 222Rn data at 100 m height and fewer 222Rn data 

availability in general, nearly all sampling events show an almost constant positive non-fossil ΔCO2 offset, similar to 

the Rhine Valley. From the fit, we conclude that this offset is about 2 ppm, which is also accidentally in line with the 

finding from the Rhine Valley. It ought however to be said, that the linear regression is largely determined by the 

highest fossil CO2 enhancement of 61 ppm. As for the Rhine Valley, we do not understand the origin of this non-fossil 

ΔCO2 offset. 

Returning to the initial question of how large the fossil share of the total ΔCO2 offset between two stations, up- and 

downwind of a fossil CO2 emission area is and considering the results from both cities, we can conclude that for the 

dormant season there is nearly a 1:1 relationship between the fossil and the total CO2 enhancements. Both cities show, 

however, a nearly constant additional non-fossil offset in the order of 2 ppm, which needs to be further studied. The 

growing season was not investigated due to limited data availability. 

 

Figure 9: Paris ffCO2 enhancement plotted versus the concurrent total ΔCO2 enhancement during the dormant season. 
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Figure 10: ffCO2 enhancements between SAC and GNS plotted versus absolute 222Rn activity concentration at SAC during 

the dormant season for Paris. Two outliers in grey are situations where the 222Rn measurements at 100 m at SAC tower 

have been above the inversion layer, while the 14CO2 samples were sampled below the inversion. 
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3 RESULTS FROM THE OBSERVING SYSTEM SIMULATION EXPERIMENT 

To address the question whether a pre-set number of 14CO2 samples in an ICOS network would better constrain 

individual national fossil fuel emissions of Central European countries, or an alternative network with the same 

number of samples collected closer to emission hotspots (RINGO network), an Observing System Simulation 

Experiment (OSSE) was conducted. In this experiment, we also aim at investigating if it is better to sample twice the 

number of downwind flasks or rather use the RINGO approach and collect explicit up- and downwind flask pairs. 

Additionally, we perform sensitivity runs with and without using information of the two-week integrated 14CO2 samples 

routinely collected at ICOS Class 1 stations to investigate their impact on the national fossil fuel estimates. To test to 

what extent the OSSE results are model-dependent, we applied two fundamentally different inverse modelling 

frameworks operated by two modelling groups, one from the Climate and Environment Sciences Laboratory (LSCE) in 

France and the other from Wageningen University (WU) in the Netherlands.  

First we describe the objectives of the OSSE and introduce the chosen model simplifications based on these objectives. 

We define different sampling strategies, which have been tested in the ICOS and the RINGO sampling networks, as 

well as the spatial and temporal domains of the modelling experiment. In Sec. 3.2 both models are introduced and the 

‘true’ fluxes, which served as input in the so-called forward run to calculate the atmospheric concentrations at the 

stations from which the ‘observed’ data are selected for the inversions are described. Further we discuss if these 

(modelled) CO2 concentrations and their variability are compatible with real ambient CO2 concentrations. Sec 3.2 is 

concluded by a description how virtual measurements were selected in the forward runs station time series. Sec. 3.3. 

introduces the technical details of the inversion setups and describes the different inversion approaches of the two 

models. The construction of the prior emission fluxes is given in this section as well. The results of the entire OSSE are 

presented and discussed in Sec. 3.4, followed by a critical review of deficits in the OSSE design in Sec. 3.5. Finally, in 

Sec. 3.6 we summarize the answers from the OSSE to the two overarching questions raised in the introduction: “Which 

network design quantifies national fossil fuel emissions better?” and “Does twice the number of samples collected 

downwind of a city contain more information than the dedicated RINGO flask pairs?” 

 

3.1 Objectives and design of the OSSE 
This subsection outlines the objectives and the scope of the OSSE and introduces the different sampling scenarios 

being tested. We explain the station selection process for the ICOS and the RINGO observation networks and define 

the geographical and temporal boundaries of the OSSE. 

 

3.1.1 Objectives of the OSSE and resulting model simplifications 
The OSSE was designed to address one specific question, namely how different sampling networks, e.g. the existing 

ICOS network or, alternatively, the (partly) hypothetical RINGO network impact the ability of inverse models to 

constrain national total ffCO2 emissions of Central European countries in the model domain (Fig. 11) using radiocarbon 

measurements. The OSSE design thus strives to include all relevant processes, which alter atmospheric 14CO2 levels 

but, at the same time, omits other well-known issues, which have to be addressed when performing inversions with 

actual observation data. Table 4 summarizes these specific configurations of the OSSE. The main idealisation in the 

OSSE was that initially we assume the models represent the atmospheric transport perfectly, which is not the case in 

reality. The thought behind this simplification was to exclusively investigate differences between the sampling 

strategies rather than diluting or overlaying results with uncertainties arising from imperfect model transport. 

However, in Sec. 3.3.3 we explain that for the inversions we had to abandon this idea and introduce an artificial model 

transport error. Without this artificial model transport error, the inversion algorithms could have retrieved the ‘true’ 

CO2 flux distribution too easily, i.e. without even needing to make use of the information contained in the 14CO2 

measurements. 

To model the non-fossil fuel contributions of the 14CO2 budget we included 14CO2 emissions from nuclear facilities and 
14CO2 emissions from CO2 respiration fluxes. We partitioned the biogenic CO2 fluxes into net primary productivity (NPP) 

and heterotrophic respiration (HR), thus, allowing to account explicitly for the 14CO2 respiration signal. The OSSE 
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omitted stratosphere-troposphere exchange since for short time scales (months) it is not relevant for the 14CO2 budget 

and does not affect the OSSE’s ability to benchmark the different sampling networks and strategies.  

 

  Table 4: Specific processes included or omitted in the OSSE design: 

Processes incorporated  Processes omitted in the OSSE 

• Nuclear fluxes of 14CO2  • Stratosphere/troposphere exchange 

• Observation errors  • Dynamic background concentration 

• Artificial transport errors  • Ocean fluxes 

• Dynamic ffCO2 emissions (WU) 

• Static ffCO2 emissions (LSCE) 

• Representation error 

• Sector dependent emission uncertainties • Plume transport 

• Partitioning of biogenic CO2 fluxes (net primary 
productivity and heterotrophic respiration)  

 

  
 

3.1.2 Sampling networks and strategies to be tested in the OSSE  
In the following, we define the different sets of stations and sampling strategies, which will be investigated in the 

OSSE. The ‘ICOS network’ is comprised of 10 (LSCE) or 9 (WU) ICOS atmosphere stations plus the Heidelberg ICOS-CRL 

pilot station. The alternative sampling network, further on called ‘RINGO network’ comprises 10 (LSCE) or 8 (WU) 

sampling station pairs close to European urban emission areas. The different number of stations used by the two 

models is due to the slightly different model domains. Since one explicit aim of Task 1.2 was to investigate the added 

value of integrated two-week 14CO2 samples collected in the ICOS network, we also varied the sampling methods 

applied in the two networks. The two different sampling methods, which are both applied in ICOS, are flask and 

integrated samples. A flask sample represents a one-hour mean Δ14CO2 value at a station, whereas the integrated 

sample represents a two-week integrated (day and night) Δ14CO2 value. Table 5 lists for each network the sampling 

strategies, which were tested in the OSSE and which are outlined in the following in more detail. To allow better 

comparability among the networks we use the same number of stations or urban emission areas in the different 

scenarios. The number of flask samples for each station or urban emission area is restricted the 26 flask samples per 

station and year, foreseen in the current ICOS 14CO2 sampling strategy, but for the OSSE we assumed that all flask 

samples are collected in the four core winter months (NDJF) only. Thus, we use only 12 flask samples per station during 

the OSSE time period of two months. Only configuration 1c) omits this restriction to explore the effects of a 3-fold 

increased 14CO2 sample number per station. 

Table 5: Sampling networks and strategies which were tested in the OSSE.  

1) ICOS network (reference) 

# Flask sampling Integrated sampling 

1a 6 targeted flasks/month 2 integrated samples/month 

1b 6 targeted flasks/month None 

1c 18 targeted flasks/month  2 integrated samples/month 

 

2) RINGO network (alternative) 

# Flask sampling Integrated sampling 

2a 3 up and downwind pairs/month None 

2b 6 downwind flasks/month None 

2c 6 downwind flasks/month 2 integrated samples/month at ICOS sites 

 

Strategy 1a) reflects the currently applied ICOS 14CO2 sampling strategy (Levin et al., 2020) where 6 targeted flasks are 

sampled per station and month in addition to the 2-week integrated samples per station. Within ICOS, target flask 
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samples are collected if the in-situ measured CO concentration exceeds a station-specific threshold (e.g. 40 ppb) above 

the CO background concentration (Levin et al. 2020). 

In strategy 1b) we examine the added value of the two integrated samples per month in 1a) by using the same flask 

samples as in strategy 1a) but without the integrated samples. 

Strategy 1c) omits the sample limitation of the current ICOS sampling strategy and collects 18 targeted flasks per 

station and month plus two integrated samples. 

Also for the RINGO network, we are testing three different sampling strategies. Strategy 2a) is consistent with the 

sampling strategy, which was conducted in the experimental RINGO test cities (see Sec. 2). We sample 3 up-/downwind 

flask pairs under suitable meteorological conditions, i.e. when the air mass is crossing from the upwind over the target 

region to the downwind station. 

Strategy 2b) omits the upwind flasks and doubles, therefore, the number of downwind flasks. Still, the downwind 

samples are only sampled if the air mass is passing over the target area. 

In Strategy 2c) we add the 2-week integrated samples from the ICOS network to the RINGO network to assess the 

added value of these samples. 

 

3.1.3 Selection of OSSE time period and spatial domain 
Due to limited resources we decided to restrict the OSSE experiment to a two-month period in winter, when the 

imprint of ffCO2 emissions in the boundary layer is strongest and at the same time, the contribution from the Gross 

Primary Production (GPP) is the smallest. The period chosen was January and February 2016. The OSSE domain, which 

is approximately given by the blue rectangular in Fig. 11 was defined to cover the western part of central Europe. 

 

Figure 11: OSSE model domain defined by the blue rectangular. Atmospheric ICOS class 1 (blue x) and class 2 (red +) 

stations and the ffCO2 emissions taken from EDGAR are represented in the map as well.   

3.1.4 Station selection and applying the RINGO approach in the OSSE 
In the following we describe the station selection process for the ICOS and the RINGO network for the OSSE. For the 

RINGO network we first select the cities and in a second step we place the artificial up- and downwind stations 

around the city. While introducing the RINGO station positioning process we show how the two-station approach 

leads to a focussing of the differential footprint on the target area. 

The station selection for the ICOS network was based on existing ICOS stations and their expected ΔffCO2 signals. The 

ffCO2 enhancements have been modelled using the STILT footprint tool of the ICOS Carbon Portal combined with ffCO2 

emissions from the Emission Database for Global Atmospheric Research (EDGARv4.3). All ICOS atmosphere stations 
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within the OSSE model domain, regardless of their class, were included in the selection process. We aimed for ICOS 

stations which are frequently and significantly influenced by ffCO2 emissions. Therefore, we evaluated the strength 

and frequency of the STILT ΔffCO2 signal when it exceeded a 10 ppm threshold during the two months of the OSSE 

experiment. Figure 12 shows for each ICOS station, within the OSSE domain, the median of the ΔffCO2 contributions 

larger than 10 ppm. The number of events is given on top of the bar charts and each bar is separated into four different 

emission categories: energy, transport, industry and others, according to their relative share in the mean ΔffCO2 at 

each station. Apart from quantity and frequency we were also seeking stations with a rather small influence from the 

energy sector, as these emissions are related to a few point sources only and can be better constrained by other means 

than atmospheric measurements like e.g. statistical bottom-up approaches or stack emission monitoring. The selected 

stations are listed in Table 6 and the station locations are represented by a star in Figure 13.  

 

 

Figure 12: Quantity and frequency of ΔffCO2 events larger than 10 ppm at all ICOS stations within the OSSE model 

domain in the OSSE timeframe (Jan & Feb 2016). Each bar represents the median of all events and is split into four 

different emission sectors. On top of each bar, the number of events is given.  

  



 

 DISSEMINATION LEVEL, Page 28 of 55 

 

Table 6: Selected ICOS atmosphere stations in the ICOS network and cities selected for the RINGO network  

ICOS Network RINGO network 
Lutjeward (LUT) Paris (SAC, GON) 

Cabauw (CBW aka CES) Rotterdam (MAS, CES) 

Saclay (SAC) Mannheim/Ludwigshafen (HEI, FRE) 

Steinkimmen (STK) Bordeaux (LSCE model only) 

Gartow (GAT) Lyon (LSCE model only) 

Karlsruhe (KIT) Lille (LIL) 

Lindenberg (LIN) Luxemburg (LUX) 

Hohenpeißenberg (HBP) (LSCE model only) Ruhr area (RUR) 

Kresin u Pacova (KRE) Berlin (BER) 

Ispra (IPR) (LSCE model only) Munich (MUN) 

Heidelberg (HEI)  

 

The city selection for the RINGO network tried to mediate between three criteria. First, the urban areas should have 

high absolute ffCO2 emissions. Second, the urban areas should have significant deviations in different emission maps 

(as a proxy for emission uncertainty) and third, the RINGO network of selected cities should have a comparable spatial 

distribution to the selected ICOS network. To meet the first criterion, continental European cities were ranked 

according to their ffCO2 emissions based on Moran et al. (2018). Cities in the UK were excluded from the list due to 

the high 14CO2 contamination of British nuclear reactors (Wenger et al. 2019). In Fig. 13 we compared two different 

emission maps, the TNO GHG Europe emission map and the TNO Dynamic Emission model map. Cities for which the 

two emission maps showed large discrepancies were listed for the second criterion, since those are the cities where 

the a-priori knowledge is smaller and thus the potential for improvement when including 14CO2 observations is higher. 

The third selection step combined the two lists from the previous criteria, and tried to achieve a spatial coverage, 

which is comparable to the ICOS network. Lastly, we included the three experimental test cities in the OSSE. The 

selected cities are listed in Table 6 and highlighted in Fig. 13. The three cities where RINGO experiments were 

conducted are shown in green and the others in red. 
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Figure 13: Difference of two emission maps (TNO Dynamic Emission model – TNO Greenhouse Gas Europe map), to 

highlight regions with larger differences in the a-priori knowledge. Black stars show the locations of the selected ICOS 

stations and red and green linked symbols show the locations of the up and downwind stations of the RINGO network, 

here the green double-stars show the three cities, which were also part of the experimental RINGO set-up. 

 

After selecting the cities for the RINGO network we positioned the artificial up- and downwind stations around these 

cities. For this we determined the main wind direction at the selected cities and created virtual up- and downwind 

stations on the main wind axis. We assured that the artificial stations in the model world are positioned in grid cells 

adjoined to the city grid cells themselves.  

For each artificial RINGO station pair, we modelled the expected fossil fuel signals between the up- and the downwind 

stations using the ICOS carbon portal footprint tool combined with the EDGAR ffCO2 emissions over the entire two-

months period of the OSSE. As an example, Fig. 14 shows the aggregated footprints (upper panels) and the fossil fuel 

contributions (lower panels) for the up- (middle), and the downwind sites (left) for situations with more than 10 ppm 

ΔffCO2 at the downwind station compared to model background for Berlin. Fossil fuel contributions are the result of 

the footprint multiplied with the fossil fuel emissions and describe how much a single grid cell contributes to the 

observed fossil fuel concentration enhancement at a station. While the aggregated contributions at the downwind 

station already show large contributions from the targeted urban area, they also contain significant contributions from 

large point sources in the far-field, i.e. upwind of the upwind station. These ffCO2 emissions from point sources in the 

far-field can experimentally not be separated from the emissions of the target region. The right panels of Fig. 14 show 

the differences between the aggregated footprints and ffCO2 contributions between downwind and upwind stations. 

Since the ffCO2 contributions from these point sources are also present in the upwind station, they are significantly 

reduced in the difference of the down minus upwind contribution. In the example of Berlin, the aggregated footprints 

at the downwind station lead to a ΔffCO2 signal of 8.9 ppm with 5.8 ppm originating from the target region, meaning 

that 3.1 ppm ffCO2 come from point sources upwind the target region. This contribution can almost entirely be 

captured by the upwind station, which observes a ΔffCO2 signal of 3.0 ppm compared to model background. This 

example illustrates how the two-station approach allows measuring the ffCO2 contribution from the targeted urban 

area. 



 

 DISSEMINATION LEVEL, Page 30 of 55 

 

 

 

Figure 14: Footprints and contribution maps for the Berlin RINGO stations. In the first row, the footprints for the 

downwind (left) and the upwind station (middle) around Berlin as well as the difference (down-up) of the footprints 

(right) are shown. The second row shows the ffCO2 contributions at both stations as well as the stations’ difference.  
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3.2 Description of the modelling systems and forward modelling 
Here we present a short introduction to the transport models and the so-called ‘true CO2 emission’ fluxes used in the 

forward run of the OSSE. Each model produced its own forward run, which in the OSSE defines the respective ‘true’ 

CO2 and 14CO2 concentrations (the definition of the ‘prior’ concentrations will be described in section 3.3). We compare 

the modelled CO2 concentrations and their variability to real ambient air CO2 concentrations to see if the OSSE CO2 

concentrations are realistic. We further describe how virtual 14CO2 measurements have been sampled in the forward 

runs. Finally, we present the footprint coverages of the ICOS and the RINGO observation network during the two 

months of the OSSE. 

 

3.2.1 Description of the forward models 
The two modelling frameworks simulated the CO2 and the 14CO2 concentrations using their own transport models at 

slightly different spatial resolutions. In Table 7 the characteristics of both transport models are listed for comparison. 

WU used a WRF-STILT combination (Fasoli et al., 2018) as a Lagrangian transport model that translates surface fluxes 

to atmospheric mole fractions. The transport model used in the LSCE modelling framework is the Eulerian chemistry 

transport model CHIMERE (Mailer et al., 2017). The WU transport models used ERA5 meteorology downscaled to the 

spatial resolution of 0.075° by 0.05° using WRF. The LSCE meteorological forcing was obtained from the 9 km × 9 km- 

and 3-hour- resolution operational forcasts of the European Center for Medium-Range Weather Forecasts (ECMWF). 

Both models assumed constant CO2 boundary conditions of 406.15 ppm. The 14CO2 boundary conditions have also 

been constant over the two-months period and are based on marine clean air 14CO2 measurements at the Mace Head 

station at the west coast of Ireland. 

Table 7: Comparison of the different transport models used by LSCE and WU. 

 WU LSCE 

Transport model WRF-STILT CHIMERE 

Spatial resolution (lat / long) 0.075° by 0.05° 0.1° by 0.1° 

Meteorology ERA5 downscaled with WRF ECMWF operational forecast 
(9km by 9km, 3h resolution) 

OSSE period Jan. & Feb. 2016 Jan. & Feb. 2016 

Boundary conditions CO2 Static: CO2 = 406.15 ppm Static: CO2 = 406.15 ppm 

Boundary conditions 14CO2 Constant: Δ14C = 12.6 ‰ Constant: Δ14C = 12.6 ‰ 

 

3.2.2 Description of the ‘true’ fluxes 
The ‘true’ fluxes for both models have been calculated offline by running a dynamic fossil fuel model (Super et al., 

2020a) with values as presented in Appendix A, at a 0.075° by 0.05° grid and hourly resolution. The meteorological 

variables needed for the fossil fuel model were taken from ECMWF, downscaled with WRF. The dynamic fossil fuel 

model uses proxies, such as population density to project country emissions of economic sectors to a high spatial 

resolution. Then, static time profiles and meteorological variables such as temperature, are used for the temporal 

downscaling of these yearly emissions. Renewable energy is estimated using wind speed and incoming solar radiation. 

For example, yearly reported energy used in household for heating is spatially downscaled using population density. 

The daily emissions are based on temperature, as e.g. in winter more heating is required. Hourly emissions are based 

on fixed time profiles, such as when people go to work and come back home (Super et al., 2020a). 

The ‘true’ biogenic CO2 fluxes of net primary production (NPP) and heterotrophic respiration (HR) have been simulated 

in both models using the land surface model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems). 

The ORCHIDEE model also provides an associated signature of δ14C for the biogenic fluxes, which were directly used. 

The δ14C-notation, in difference to the Δ14C-notation, does not contain the δ13C normalisation (Stuiver and Polach, 

1977). Thus, fractionation effects for both, the photosynthetic and the respiration fluxes have to be taken into account 

(comp. Sec. 2.4.1). Although the WU model optimises NEE, both NPP and HR are calculated. The biogenic radiocarbon 

exchange is calculated based on these differentiated fluxes, based on the δ14C biogenic signature provided by the 
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ORCHIDEE model. Nuclear 14CO2 emissions are accounted for in both models using the annual mean emissions and the 

spatial distribution as given in Zazzeri et al. (2018). Table 8 summarises the choice of the ‘true’ fluxes used for the 

forward runs of both models in the OSSE. 

Table 8: Compilation of the ‘true’ fluxes used for the forward runs by LSCE and WU. 

 WU LSCE 

ffCO2 fluxes dynamic fossil fuel CO2 
emission model (0.075° by 
0.05°) 

dynamic fossil fuel CO2 
emission model (0.05° by 0.1°) 

biogenic CO2 fluxes ORCHIDEE NPP and HR 
(0.075° by 0.05°) 

ORCHIDEE NPP and HR 
separated (0.5° by 0.5°) 

Nuclear 14CO2 emissions  Zazzeri et al. 2018 Zazzeri et al. 2018 
14CO2 emissions from respiration ORCHIDEE based on HR ORCHIDEE based on HR 

 

3.2.3 Comparison of forward-run CO2 concentrations to observations  
Each model produced its own ‘true’ forward-run using the ‘true’ emissions given in Table 8. For the objectives of the 

OSSE the simulated ‘true’ CO2 concentrations do not necessarily have to reproduce actual measurements, but in terms 

of magnitude and variability of the modelled CO2 signal, the simulated CO2 concentrations should be realistic. In Fig. 

15 we compare the CO2 concentration of the ‘true’ forward-runs for Heidelberg station with the actual observations 

performed during the modelling time window of January and February 2016. As no continuous Δ14CO2 observations 

exist we concentrate on CO2 only. The observations are given in black whereas the ‘true’ forward-runs are given in 

orange and blue for the WU and LSCE model, respectively. The background-level as well as the magnitude and timing 

of the CO2 spikes are comparable between both models and the observations. The frequency and the extent of diurnal 

and synoptic variations are also similar between the observations and the ‘true’ forward-run. Generally, the LSCE 

model agrees slightly better with the observations.   

 

Figure 15: CO2 concentration results from the two different ‘true’ forward-runs for both models (blue: LSCE, orange: 

WU) for the Heidelberg station. The measured CO2 concentration is given in black. The second panel shows the 

differences (model-observations) for both models. 
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3.2.4 Virtual 14CO2 sampling from the forward-runs 
For both models we performed individual virtual 14CO2 samplings from the ’true’ forward-runs. We virtually collected 
14CO2 samples for the ICOS and the RINGO networks according to the different sampling strategies, summarized in 

Table 5. For the 14CO2 sampling in the ICOS network (strategy 1a-1c) we followed in principle the ICOS sampling strategy 

described in Levin et al. (2020). We allowed sampling between 11 – 16 UTC. For each day we kept the flask with the 

largest CO2 offset compared to a 4-day rolling minimum. Finally, at the end of the month, we keep from these pre-

selected flasks the 6 (or 18) afternoon flasks with the largest CO2 offsets compared to the 4-day rolling minimum. Using 

this sampling strategy, we avoid sampling all flasks during one extreme event and distributed the flasks better over 

individual events. For strategy 1a and 1c we additionally performed 2-week integrated samples by averaging over two 

weeks. The sample selection described above is only mimicking the ICOS flask sampling strategy described in Levin et 

al. (2020) since the OSSE did not simulate CO mixing ratios, which are used by Levin et al. (2020) to select the 14CO2 

samples in the ICOS flask sampling strategy. 

For the 14CO2 sampling in the RINGO network (strategy 2a) we tried to mimic the Lagrangian sampling approach, which 

was applied at the experimental stations. Possible sampling times were restricted to between 11-16 h and the sampling 

was based on wind speed and the wind direction. Similar to real sampling events, we requested a minimum wind 

speed of 2 m/s at both stations. The wind directions during the sampling hour had to be stable within ±15° of the 

straight connection line between the two stations. The distance between the station pair and the wind speed defined 

the travel time Δt. One-hour average sampling was conducted at the upwind station at time t and t+Δt at the downwind 

station. To ensure more stable meteorological situations we requested that the wind criteria are met at both stations 

also in the next Δt time step. At the end of the month, the samplings with the three highest ΔCO2 (down – upwind) 

were selected for analysis. If for a station pair less than three samplings were selected, the wind direction criterion 

was softened in steps of 5°.  

In strategy 2b three additional downwind flasks should be collected instead of the upwind flasks. Here, the wind 

criteria must be fulfilled at the downwind site at the sampling time t and at t-∆t/2 to ensure that the signal from the 

target region is present at the station. 

For strategy 2c we added the 2-week integrated samples as in sampling strategy 1a and 1c. 

For both models six individual sets of virtual Δ14CO2 observations according to the sampling strategy were provided. 

The Δ14CO2 observations together with the in-situ afternoon CO2 observations (11h-16h) served as input data for the 

inversion scenarios outlined in Tab. 5. 

 

3.2.5 Footprint coverage of the inversion 
As the two-months’ time window and the set of stations in the OSSE sampling networks are limited we investigated 

the accumulated footprints for the ICOS and the RINGO network to see which European countries were sufficiently 

covered by the footprints. Figure 16 shows the aggregated footprints for January and February 2016 for the two 

networks calculated by WU and given in logarithmic scale. Note, the WU RINGO setup could not include the French 

stations in Bordeaux and Lyon, as these cities fell outside the inner domain of the WRF simulation. For both networks, 

the WU footprints are comparable and show that only some European countries (northern) France, Belgium, The 

Netherlands, Luxembourg, and Germany have a decent coverage. The LSCE footprints in the RINGO network extend 

further to southern France including the stations around Bordeaux and Lyon. Western Czech Republic is only covered 

by the ICOS network whereas the coverage for Luxembourg is largely improved in the RINGO network.  

The aim of the OSSE is to compare the ability of the different networks and sampling strategies to improve national 

total CO2 emissions of European countries. Based on this footprint analysis we conclude that only for France, Belgium, 

The Netherlands and Germany we have sufficient footprint coverage so that the observations can potentially improve 

the prior fluxes in the inversion approach. Therefore, we restrict the analysis of the results in Sec 3.4 to these four 

countries. 
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Figure. 16: Aggregated footprint coverages for the ICOS and the RINGO network for January and February 2016 as 

provided by the WU model. Note that for the RINGO network WU was not able to include the stations around Bordeaux 

and Lyon. The RINGO footprint in the LSCE model does thus extend further to southern France. 

 

3.3 Description of the inversion set ups 
According to the RINGO Task 1.2 proposal we aim to assess the added value of different 14CO2 sampling networks and 

strategies to better estimate national fossil fuel emissions. Thus, the inversion results focus on the total fossil fuel 

emissions and the biogenic net ecosystem exchange (NEE) on national scales simultaneously. In the following we give 

a brief overview to both applied inversion frameworks and work out the differences among them. We will then 

describe which different priors have been used in the inversions and conclude with introducing the artificial transport 

uncertainty applied to virtual observational data derived in Sec. 3.2.4. 

 

3.3.1 Description of the inversion models 
The WU inversion framework consists of the WRF-STILT model (Fasoli et al., 2018) as transport operator and a dynamic 

fossil fuel emission model (Super et al., 2020a), which translate surface fluxes to atmospheric mole fractions. The fossil 

fuel CO2 emission E [cat, x,y,t] by a specific source category (energy production, industry, stationary sources and (non) 

road transport) is described as: 

Where P is the national total energy use in that source category (PJ yr-1), fE the emission factor (kg CO2 PJ-1), fx,y a spatial 

proxy, ft the time profile, and fsubcat a factor that may distribute the total of one category into subcategories (e.g. coal 

or gas fired power plants). In the ’true’ emissions, each of the variables has been given a scaling factor of 1. In the 

prior, a choice of the scaling factors may be given a value other than 1, after which the inversion is supposed to scale 

that factor back to 1. 

WU applies an Ensemble Kalman Filter algorithm (Peters et al., 2005), that optimises the scaling factors to result in 

atmospheric mole fractions as close as possible to the measurements. The WU inversion framework thus optimised 

the parameters used in the dynamic fossil fuel emission model separated for different economic sectors instead of 

e.g. the spatial distribution. The fossil fuel emissions of four economic sectors (industry, public power, stationary 

sources and (non) road transport), are optimised individually but are afterwards jointly reported as fossil fuel (FF) 

emissions. In addition, the net ecosystem exchange (NEE) are optimised with one scaling factor per country.  

 

The LSCE inversion system is based on an ensemble of inversions with the variational inversion system (Wang et al., 
2018). The inversion follows a Bayesian statistical framework, which corrects a statistical prior estimate xb of the actual 
value xtfor a set of the control variables x. This correction is based on a set of atmospheric measurements, called 

𝐸𝐶𝑂2
[𝑐𝑎𝑡, 𝑥, 𝑦, 𝑡] = 𝑃 × 𝑓𝐸 × 𝑓𝑥,𝑦 × 𝑓𝑡 × 𝑓𝑠𝑢𝑏𝑐𝑎𝑡  
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hereafter the observations yo, accounting for uncertainties in the prior estimate and for all the other sources of 
uncertainties (which are called all together “observation errors”) when comparing the simulated and measured 
observations. Assuming that the uncertainties in xb and yo are unbiased and Gaussian, characterized by the uncertainty 
covariance matrix B and R, the optimal estimate of x (denoted as xa), given xband yo, is obtained by minimizing the cost 
function J(x): 

𝐽(𝑥) = (𝑥 − 𝑥𝑏)𝑇𝑩−1(𝑥 − 𝑥𝑏) + (𝐻(𝑥) − 𝑦)𝑇𝑹−1(𝐻(𝑥) − 𝑦) 
Where T denotes the transpose, H is an observation operator, which maps the control variables to the observational 
space. In LSCE inversion system, the control variables gather the country-wide scaling factors for CO2 fluxes from 
fossil fuel emissions for 4 sectors (industry, public power, households and road transport), as well as CO2 fluxes from 
biosphere including NPP and HR, and the δ14C signatures of biogenic CO2 fluxes. The operator H is the combination of 
two operators: the first operator (called Hdist hereafter) distributing fossil fuel and biogenic CO2 and 14CO2 fluxes at 1h 
temporal resolution and the 0.1°×0.1° spatial resolution, and the second operator (called Htransp hereafter) simulating 
the atmospheric transport.  
The regional atmospheric chemistry transport model CHIMERE is used for Htransp to estimate the relationship between 

CO2 and 14CO2 fluxes and CO2 mole fractions and the atmospheric δ14C signals. After the inversion, the total national 

budget of a given country i is calculated by aggregating the fluxes from all 0.1° grid points and all the timeswithin that 

country i as Fa,i=ΣiHdist(xa).  

Although the inversion is performed for the fossil fuel CO2 emissions for four sectors separately, and for NPP and HR 

CO2 fluxes separately, we aggregate the posterior estimate of these fluxes for the evaluation of the performance of 

the inversion. For the fossil fuel CO2 emissions, we aggregate the four sectors to the national total, while for biogenic 

CO2 fluxes, we add NPP and HR to evaluate the results in terms of NEE only.  

There are a few differences between the two inverse approaches. The WU model optimises parameters in a fossil fuel 

emission model. Parameters may be the total energy use, emission factor, emission ratio, the time profiles or the 

distribution over sub-sectors. The parameters can vary by emission sector, by country and in time. See Super et al., 

(2020a) for a description of the model. The parameters are optimised using an Ensemble Kalman filter for every 5-

days. The LSCE inverse modelling framework optimizes the national total budget of anthropogenic and natural fluxes 

for each country during the two months of interest, using a variational approach to minimize a cost function that 

weights the prior estimate of the fluxes and the constraints from observations of CO2 and 14CO2. The main differences 

are summarised in Table 9. 

Table 9: Comparison of the different modelling frameworks used by LSCE and WU. 

 WU LSCE 

Transport model WRF-STILT (0.075° by 0.05°) CHIMERE (0.1° by 0.1°) 

Optimisation technique Ensemble Kalman Filter with 96 
members 

Variational approach with 
Monte Carlo samplings 

Optimisation cycle 5 days Full 60 days 

Propagation of uncertainty 
between cycles 

No Not applicable 

Number of parameters 30 per 5 days 70 in total 

Prior FF flux 4 different sectors 4 different sectors  

Optimising 14C biogenic 
signature 

No Yes 

Random errors on observations Yes Yes 

Biogenic CO2 fluxes NEE NPP and HR 

 

3.3.2 Construction of the prior fluxes for the different inversion set ups 
The prior emissions used in the two OSSE inversion frameworks cannot be identical due to the different model setups. 

However, we strove to have both prior emissions as compatible as possible. The prior fossil fuel CO2 emissions are 

perturbations of the ‘true‘  fossil fuel CO2 emissions. The construction of the prior emissions respected two constraints. 

First, the total prior fossil fuel CO2 emissions in the OSSE domain have to be reduced to a mean µ of 90% compared to 
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the ‘true’ emissions. Secondly, the relative uncertainties σ for each emission sector were commonly specified for both 

models as follows: 10% to Public Power and 25% each to Industry, Other stationary sources and Road transport. The 

relative uncertainties of the biogenic fluxes were model specific. The WU prior assigned 30% relative uncertainty to 

NEE while the LSCE prior used 50% relative uncertainty for NPP and HR. The relative uncertainty in the LSCE prior 

reduces to 35% if NPP and HR are combined to NEE. The LSCE model further added 20% random uncertainty to the 
14CO2 signature of heterotrophic respiration.  

In the WU model, the prior fluxes consist of an ensemble of 96 members, each a modification of the true data, where 

each parameter is randomly varied by a scaling factor with mean μ and standard deviation σ over the 96 ensembles 

for each 5-day cycle in the two-months period studied. The prior for the next cycle is based on the optimised fluxes 

from the previous cycle, but the (reduced) uncertainty is not propagated. The prior for the first cycle is a perturbation 

of the truth by scaling factor S, where S is drawn from a normal distribution with mean 0.9 and σ the uncertainty for 

the respective sector. This implies a bias of 10% and the uncertainty to be 1σ. S varies per country. There are 5 

parameters per country (4 FF + 1 bio). These 5 parameters are optimised for 6 countries which have a large influence 

on the observed mole fractions at the stations (see Fig. 16). Note that the nuclear emissions are not optimised. 

For the LSCE system the prior fossil fluxes are created similarly as for the first cycle of the WU model. Total fossil 

emissions are reduced to 90% while for each county and emission sector the prior emissions are randomly perturbed 

within the sector based on the 1σ uncertainty. The LSCE model worked with two different realizations of biogenic 

priors. First, two independent biogenic flux products were tested. Therefore, biogenic fluxes from the Vegetation 

Photosynthesis and Respiration Model (VPRM) were used to create the distribution of the biogenic fluxes in the priors 

(Hdist,bio) whereas the ‘true’ biogenic fluxes and their distribution came from the ORCHIDEE model. This configuration 

is called BIOhard further on. We assigned an uncertainty of 50% to the VPRM scaling factors for both NPP and HR. The 

isotopic 14CO2 signature for the heterotrophic respiration in the prior distribution (Hdist,δbio) was constructed as a 

spatially smoothed version of the 14CO2 signature of ORCHIDEE used for the simulation of atmospheric 14CO2 mole 

fractions. An uncertainty of 20% was assigned to the scaling factors of 14CO2 signature of the heterotrophic respiration. 

Alternatively, we used a perturbation of the ‘true’ flux distribution as prior. Here the scaling factors for NPP and HR 

where perturbed randomly by 50% respectively, and the 14CO2 signature of the heterotrophic respiration was 

randomly perturbed by 20%. In this inversion, the distribution of the biogenic fluxes in the prior (Hdist,bio) is also taken 

from ORCHIDEE, which is the same as the ‘true’ flux field used for the simulation of atmospheric CO2 mole fractions 

and 14CO2 activities. This configuration is referred to as BIOsimple. 

3.3.3 Artificial transport uncertainty 
For the inversions we chose to use only hours with well-mixed ambient concentrations (11-16h), as atmospheric 

transport models are better able to simulate well-mixed conditions. This restriction was made because it is common 

in the real world, although it is not mandatory in an OSSE. Still, this restriction leads to more than 3000 CO2 

measurements for the ICOS network. If applying the same transport model for the ‘true’ forward-runs and the 

inversions the optimisation algorithms thus find the ‘true’ fluxes too easily, even without exploiting the information 

contained in the 14CO2 data. Thus, the initial idea of using the same transport model to workout small changes between 

different sampling networks and strategies without being distracted by transport uncertainties was not possible. As 

long as atmospheric transport is not resolved perfectly in real world problems, assuming perfect transport resulted in 

biased conclusions. Therefore, we have mimicked errors in atmospheric transport by adding random noise to the 

virtually measured atmospheric mole fractions. In this random noise, we have also added the (much smaller) 

measurement errors for both CO2 and 14CO2, according to: 

𝜀𝑜𝑏𝑠 = √𝜀𝑚𝑒𝑎𝑠
2 +  𝜀𝑡𝑟𝑎𝑛𝑠

2 ∗ √𝑁𝑜𝑏𝑠 

Where 𝜀𝑜𝑏𝑠 is the error of the virtual observations, the subscripts 𝜀𝑡𝑟𝑎𝑛𝑠  and 𝜀𝑚𝑒𝑎𝑠 indicate the errors of transport 

and observation, respectively. 𝑁𝑜𝑏𝑠 is the number of observations per day. 𝜀𝑚𝑒𝑎𝑠 and 𝜀𝑡𝑟𝑎𝑛𝑠 were set to 0.2 ppm (2‰) 

and 2 ppm (5‰) for CO2 (Δ14CO2). The measurement errors 𝜀𝑚𝑒𝑎𝑠 are based on typical precision of the analysis of air 

samples. For the random transport error 𝜀𝑡𝑟𝑎𝑛𝑠, a number was drawn from a normal distribution with a mean of 0 and 

standard deviation of 𝜀𝑡𝑟𝑎𝑛𝑠. The uncertainty 𝜀𝑜𝑏𝑠 is expanded by the factor √Nobs (number of observations per day) 
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to counteract the reduction of the uncertainty which occurs when averaging multiple measurements per day. To 

obtain a value for 𝜀𝑡𝑟𝑎𝑛𝑠, we have tested multiple values and chose a value for which the inversion was able to draw 

information from the observations, but, at the same time, the inversion did not become too easy. The ratio of the CO2 

and Δ14CO2 transport errors was chosen such that it represents signals from transported fossil fuel CO2.   
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3.4 Results of the OSSE inversions 
Both modelling groups performed inversions based on the different sampling networks and sampling strategies 

outlined in Table 5. In the current setup, the WU model works with individual cycles of 5-days (see section 3.3.1). It is 

thus, not possible to use 2-week averaged samples without assuming prior knowledge on how the information of the 

2-week samples has to be distributed to the five day cycles. The WU model, in its current setup, can thus not provide 

results for three out of the six different sampling strategies which we wanted to test. 

To evaluate the performance of the inversions for the different sampling networks and strategies we chose to compare 

the achieved Misfit Reductions (MR) defined in Wang et al. (2018) as follows: 

MR=1-εa/εb 

where εa =Fa-Ft and εb = Fb-Ft are the posterior and prior misfits between the inverted and prior emission fluxes against 

‘true’ fluxes Ft for the total fossil fuel emissions and NEE exchange. MRs range from negative values (when the 

inversion deteriorates the precision of the estimation) to 1 (or “100 %”, when the inversion provides a perfect match 

with the ‘true’ emissions). 

Both modelling groups performed a ‘CO2-only’ inversion scenario for the ICOS and the RINGO network as reference to 

quantify the MR without using 14CO2 observations. The LSCE inversions are further distinguished by two different 

model configurations: the BIOhard and BIOsimple case according to the biogenic priors used (compare section 3.3.2). In 

Appendix B, the results of the OSSE are presented on a country level for Germany, France, Belgium and The 

Netherlands showing how variable the misfit reductions are on country level. 

In this summary, we focus on country-averaged misfit reductions for the different models, model configurations, 

sampling networks and sampling strategies. We restrict the analysis to four countries: Germany, France, Belgium and 

The Netherlands to avoid major changes in the footprint coverage between the ICOS and the RINGO network (cf. Sec. 

3.2.5). When averaging the national misfit reductions for these four countries we applied double weights to France 

and Germany and only single weights to Belgium and The Netherlands to account, at least partially, for their different 

geographical extents and accordingly their different total ffCO2 emissions. 

The averaged misfit reductions for the different sampling strategies, both models and model configurations are listed 

in Table 10 for the ICOS network and in Table 11 for the RINGO network. The misfit reductions are reported separately 

for fossil fuel emissions (FF) and net ecosystem exchange (NEE). In the following, we systematically address the 

specifics of the individual results. 

Table 10: Averaged fossil fuel (FF) and net ecosystem exchange (NEE) misfit reductions (MR) for different sampling 
strategies in the ICOS network for the different models and model configurations. The averaged MR is based on 
Germany, France, Belgium and The Netherlands, giving Germany and France double weighting. Negative reductions 
indicate an increase in misfits relative to the prior flux. 
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Table 11: Averaged fossil fuel (FF) and net ecosystem exchange (NEE) misfit reductions (MR) for different sampling 
strategies in the RINGO network for the different models and model configurations. The averaged MR is based on 
Germany, France, Belgium and The Netherlands, giving Germany and France double weighting. Negative reductions 
indicate an increase in misfits relative to the prior flux. 

 

 

3.4.1 Misfit reductions of the CO2-only inversion scenario 
For the LSCE model, the misfit reductions of the CO2-only scenario largely depend on the choice of the biogenic prior 

emissions. In the BIOsimple configuration, CO2 observations alone reduce the misfits by about 80-90% for the fossil fuel 

as well as the biogenic CO2 emissions. The prior emissions in the BIOsimple configuration are based on a random, but 

country-wide constant, perturbation of the ‘true’ fossil fuel emissions (each emission sector separately) and a random, 

but country-wide constant, perturbation of the ‘true’ biogenic fluxes (cf. Sec 3.3.2). Although we added the artificial 

transport error to the CO2 observations (cf. Sec. 3.3.3), the inversion algorithm is still reaching up to 87% MR using 

only CO2 observations. This finding is independent of the sampling network. So to summarize, the BIOsimple 

configuration is still too simple, even after adding the artificial transport uncertainty. 

In contrast, the biogenic fluxes of each grid cell changed in the BIOhard configuration, as the prior distribution (Hdist,bio) 

of the biogenic fluxes (NPP and HR) were taken from VPRM, instead from ORCHIDEE. However, we did not increase 

the number of unknowns for the inversions to solve for. We still optimise the country-wide scaling factor for NEE (NPP 

and HR) and fossil fuel fluxes, but not Hdist,bio. This leads e.g. for Germany to the situation that on grid-cell level the 

prior and ‘true’ biogenic fluxes are dissimilar, even if the inversion finds the correct national total budget (i.e. 

ΣiHdist(x)=Ft where the distribution of Ft coming from ORCHIDEE is different from Hdist,bio coming from VPRM). Thus, a 

single scaling factor on the country-scale level cannot improve the spatial misfits for Germany. This problem is 

illustrated in an example of the Heidelberg station in Fig. 17. The black lines in Fig 17 show the biogenic CO2 

concentration enhancements caused by NEE fluxes. The left plot shows the CO2 enhancement if the spatial 

distribution, the separation into different ecosystem types and the national totals are taken from the ORCHIDEE 

model. The middle plot is based on the spatial distribution, the separation into different ecosystem types and the 

national total budget from the VPRM model. The purple shaded areas in each graph represent the share of the biogenic 

CO2 enhancement which originates from Germany alone. As long as the spatial distribution of the biogenic fluxes is 

scaled with the corresponding separation into different ecosystem types and the total national budget from the same 

biogenic process model the resulting NEE contributions at the HEI station are within about 50% compatible. However 

as shown in the right plot of Fig. 17, if the spatial flux distribution from VRPM is scaled by the ecosystem type 

separation from ORCHIDEE the NEE contributions at HEI station are increased by a factor of 2 although the national 

total budgets of ORCHIDEE and VPRM have been scaled to match for this example. This implies as well that the NEE 

contribution has to be underestimated in other places in Germany to arrive at the same national total NEE 

contribution. From this comparison, it is obvious that the combination of ORCHIDEE with VPRM with only the national 

total as scaling factor cannot lead to misfit reductions on the grid level, although the inversion might find the correct 

national total NEE emissions.  
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Figure. 17: Biogenic CO2 contribution at the Heidelberg station (black lines) according to the ORCHIDEE (left) and the VRPM (middle) 
model over the period of 6 days. All plots are based on prior biogenic emissions. The x-axis is given in hours. The combination of 
the VPRM spatial distribution combined with the ecosystem type separation and the national budget from ORCHIDEE is given in 
the right plot. Black line shows the CO2 enhancement due to NEE. The purple shaded area shows the CO2 enhancement due to 
NEE from Germany. 

 

With this problem in mind we now return to investigating the misfit reductions of the different models and model 

configurations. The NEE misfit reduction for the LSCE BIOhard configuration changes only slightly if we compare the 

ICOS to the RINGO network. This change in MR can be explained with the different sets of stations in the two networks 

where the VPRM and the ORCHIDEE emissions once fit more once fit less together. In general, the finding remains the 

same. For the BIOhard configuration, we can thus conclude that the choice of parameters to optimise in the inversion 

was not compatible with the perturbations of the prior. Consequently, we cannot expect from any of the different 

sampling strategies to substantially improve the NEE misfit reduction for the LSCE BIOhard configuration. 

The CO2-only inversion of the WU model does reduce the fossil fuel emission misfit by about 60%, independent of the 

sampling network used. However, the NEE misfit reduction in the WU CO2-only inversions is network dependent. In 

the ICOS network, although more aimed at biogenic fluxes, the initial NEE misfit between the prior and the ‘true’ NEE 

emissions improves by about 13%, while it improves by 41% in the RINGO network.  

 

3.4.2 Added value of 14CO2 observations 
After having worked out some fundamental differences and problems of the individual models and model 

configurations, we use the CO2-only inversion scenarios as reference to evaluate the benefits of the sampling strategies 

of 14CO2 samples listed in Table 5. In the following, we will not discuss the LSCE BIOsimple configuration any further as 

the misfit reductions in the CO2-only scenario have already been nearly 100% and no significant additional misfit 

reduction is found for any sampling strategy in neither of the sampling networks.  

 

• LSCE BIOhard configuration: 

Adding six 14CO2 flask observations per month and station in the ICOS network leads to an improvement of the FF MR 

to 47%, and increases to a FF MR of 56% when sampling 18 14CO2 flasks per month. The 2-week integrated 14CO2 

samples, however, do not change the FF MR. It is surprising that the MR improves so little when increasing the number 

of 14CO2 samples and we emphasise that the OSSE's information value is limited due to the problems discussed above. 

The misfit reduction improvement in the RINGO network is less pronounced. Adding 14CO2 observations in the RINGO 

network only improves the FF misfit reduction to about 11-13%. Changes in the FF misfit reduction between the 

different RINGO sampling strategies are insignificant. 

For both sampling networks no significant change in the NEE misfit reduction is observed. As explained in Sec. 3.4.1, 

this is due to the lack of degrees of freedom in the OSSE, which cannot change the spatial distribution of the biogenic 
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fluxes. This NEE MR deficit was, therefore, expected and is not representative for the true potential of 14CO2 to also 

improve biogenic fluxes. 

 

• WU: 

In the current setup, the WU model cannot include the 2-week integrated 14CO2 samples (cf. Sec. 3.4) providing thus 

results for only three out of the six different sampling strategies. Adding 14CO2 observations in the ICOS network results 

in a significantly higher NEE misfit reduction (46%). The FF misfit deteriorates to 42%.  

Adding 14CO2 observations in the RINGO network generally improves the misfit reduction. In strategy 2a, with up- and 

downwind flasks, NEE misfit reduction decreases by 3%, but the FF misfit reduction increases to 80%. In Strategy 2b, 

having only downwind flasks, the NEE and FF misfit reduction are both 58%. This is 17% point higher for NEE, but 6% 

point lower for FF compared to 2a.  

In summary, the RINGO network results in higher misfit reductions for both NEE and FF. Up-/downwind sampling helps 

constraining FF fluxes, whereas only downwind sampling improves the NEE estimates the best. It is currently not 

understood why this is the case. 

 

3.5 Weakness in the OSSE design  
In this section we want to revisit the OSSE design and highlight the deficits, which have led to some of the problems 

found during the interpretation of the results. These design errors will be discussed in the following. 

 

3.5.1 Scales did not match 
One fundamental problem occurred from merging different spatial scales within Task 1.2. The proposal text of Task 

1.2 requests that 14CO2 sampling strategies on both, the urban and national scales should be addressed. However, 

combining these scales was and is highly challenging. The open questions regarding the urban sampling strategies 

would have required modelling at the urban scale. Instead, open questions on both the urban and national scale were 

put to the OSSE system. Mixing different questions, often results in none of them being answered satisfactorily. Still 

the current approach may be defendable realising that the majority of the fossil fuel emissions occur in urban areas. 

By designing the RINGO network, we arguably came into a better position to estimate the urban emissions, which 

make up a large fraction of the national totals.  

 

3.5.2 Choice of prior fluxes and prior uncertainties 
The two LSCE model configurations show how sensitive the inversion results are to the choice of the prior fluxes. For 

the LSCE model, the straight-forward perturbation of the ‘true’ FF and NEE emissions to construct the prior FF and NEE 

fluxes was too simple. Applying random, but country-wide constant perturbations, which kept the spatial distribution 

of the fluxes the same was not appropriate. Prior fluxes with different spatial distributions would have posed a more 

realistic problem but this would have requested at the same time that the OSSE has more scaling factors to be 

optimised. 

In the LSCE BIOhard configuration, the spatial distribution of the NEE prior fluxes did change. However, we did not 

adequately adjust the degrees of freedom for the inversion to alter the NEE fluxes. We kept the general OSSE design 

to optimise one parameter per country for the NEE and FF fluxes. This posed an unsolvable problem to the model. 

Also, the prior uncertainties were kept the same as in the BIOsimple configuration. As stated in Wang et al. (2018), if the 

prior uncertainty statistics in the inversion system do not match the difference between the a-priori and true 

estimates, the posterior estimate of emissions deviates significantly from the truth. 
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The WU model used variations of prior fluxes which were on average biased by 10% against the ‘true’ fluxes. For the 

WU model, the country-wide constant perturbations fit to the inversion of country-wide constant emission 

parameters. It is therefore all the more remarkable that the performance of the model, with regard to NEE misfit 

reduction, cannot be explained. 

 

3.5.3 Use of only one transport model 
In the Sec 3.1.1, we argued that having the same transport model for the ‘forward’ and the ‘backward’ run is beneficial 

since differences in the results would originate from different sampling networks and strategies only and not from 

different transport models. It turned out that this idea is not tenable. When using the same transport model and only 

the measurement uncertainties, CO2 measurements alone contain sufficient information for the inversion algorithms 

to solve for the true fluxes. The approach to mimic the transport uncertainties by adding additional uncertainty to the 

observations (cf. Sec. 3.3.3) is only a stopgap solution as the choice of the additional transport error and especially the 

ratio between the additional transport errors for CO2 to 14CO2 strongly influences the conclusiveness of the OSSE. We 

therefore advice to better use two different transport models and thus include a more realistic transport error. 

We performed test inversions where we varied the uncertainty assigned due to transport errors from 0.5 to 4 ppm. If 

the uncertainty was too small, the optimised was always unreasonably close to the true flux, while for too large 

uncertainty, the optimised did not converge towards the true flux. This led us to work with a transport uncertainty of 

2 ppm. However, the choice also depends on the initial bias, the number of observations provided to the inversion 

and the distribution of the CO2 emissions over biogenic and fossil contributions (e.g. the fossil fuel landscape in France 

is quite different compared to other countries because of the large share of nuclear power production). 

 

3.5.4 Choice of optimisation regions 
The OSSE study focused on national total emissions. While this is evident from a user and stakeholder perspective it 

poses additional difficulties when interpreting the results. Total fluxes as well as the relative contribution from 

different sectors vary significantly between countries, in concordance with their spatial extent. Simple averaging of 

the results of different countries therefore leads to ill-weighted conclusions. In addition, the number of stations and 

the footprint coverage have been very variable between the countries. It would have thus been better to choose 

optimisation regions, which are comparable with respect to: spatial extent, number of observation stations and 

footprint coverage. We tried to partly account for this by selecting only those countries with sufficient footprint 

coverage and applying different weights to different countries when averaging their results. 

 

3.5.5 Choice of time-span and duration 
The selected time-frame of two months was too short. We had about twelve 14CO2 samples from eight or ten stations 

each to constrain the national total emissions of ten European countries, which were part of the OSSE domain. 

Performing inversions over a longer time window would have allowed to split the entire inversion period into smaller 

time-frames and thus produce more individual inversions, which could be averaged for the annual totals. The WU 

model had already applied this approach and used an internal cycle length of 5 days. This might however be too short 

taking into account the number of available 14CO2 samples. On average each WU inversion cycle contained only one 
14CO2 observation for each station. For RINGO strategy 2a only every second 5-day cycle contained a 14CO2 sample. 

Thus, a better compromise between the available 14CO2 samples per cycle and the number of cycles to perform a 

statistical analysis of the results is advised.  

The initial choice of using two winter months was made to maximise the share of ffCO2 in the boundary layer. While 

this is true, the benefit of 14CO2 observations might be even larger in summer months when the biogenic exchange 

fluxes are larger and the CO2 enhancements are less dominated by ffCO2 emissions.  

 



 

 DISSEMINATION LEVEL, Page 43 of 55 

 

3.6 Conclusions from the OSSE  
The OSSE was designed to address the question how the design of the sampling networks impacts the ability of the 

inverse models to constrain the national total ffCO2 emissions using radiocarbon measurements. Based on the 

extensive observational and modelling experiments described above, while bearing in mind the weaknesses of the 

OSSE design and the deficits of the individual models and model configurations we now address the two questions 

posed in the introduction section of the OSSE. 

 

3.6.1 Does twice the number of downwind samples better constrain urban ffCO2 emissions than paired up- 
and downwind samples? 

In Sec 2.5 we addressed this question from an experimental point of view. There it was shown that better fossil fuel 

estimates would be obtained with an upwind and a downwind measurement than with only downwind measurements. 

The OSSE should also have addressed this question, but as stated in Sec. 3.5.1, it cannot be appropriately answered in 

the present OSSE design. Judging the benefits of local background measurements needs dedicated modelling at the 

urban scale, but the present OSSE was optimising the national scale. The obtained results from the present OSSE might 

not be completely meaningless as better performance on the national scale might indicate a better performance at 

the local scale as well, but we have to bear in mind that the results have been derived on a not appropriate scale for 

the problem. This might already explain why the different models come to different results for this question. The LSCE 

models does not find significant differences between the RINGO sampling strategies. Contrary, the WU model finds 

differences between the sampling strategies. The downwind-only sampling approach improves the misfit reductions 

of FF and NEE simultaneously by about 60%, the up-/down approach performs better for the FF misfit reduction and 

less well for NEE. We think the explanation may be in the amount of information contained in the number of 

independent CO2 and 14CO2 observations in combination with their footprint. E.g. more downwind samples may 

increase the number of independent measurements, but at the cost of a loss of footprint information. 

 

3.6.2 Does the RINGO network yield better estimates of national total fossil fuel emissions? 
Also regarding this question, the two models are not in agreement. While the WU model predicts better misfit 

reductions for the RINGO network than for the ICOS network, the LSCE model suggests the opposite. 

In the LSCE model, the ICOS network benefits much more from 14CO2 observations than the RINGO network. Based on 

the findings from the experimental part, we can assume that the CO2 enhancement in urban emission plumes contain 

a large share of fossil fuel CO2. Therefore, the 14CO2 information increase for an RINGO downwind sample is smaller 

compared to the information increase when the fossil and biogenic components are separated in the CO2 

enhancements at an ICOS background station. Furthermore, we may assume that the ICOS background stations have 

a more homogeneous coverage of different spatial regions since the sampling strategy of the ICOS network has no 

wind direction preference, although it has a preference for maximum ffCO2 signal. For the performance of the LSCE 

inversion, these advantages are larger than the advantage of having larger ΔffCO2 signals. 

The WU model, which optimises the emission process parameters, performed generally better in the RINGO approach 

than in the ICOS approach. Especially the RINGO flask sampling approach lead to very high (80%) fossil fuel misfit 

reductions in the WU model. In the experimental part (cf. sec. 2.5), we found that the RINGO approach led to smaller 

errors in the ΔffCO2 estimates. In addition, it focusses the differential footprint on the emission region (cf. Fig. 14). 

Both of these effects can be beneficial to the WU inversion system and help better optimise the process parameters 

of the dynamic emission model.  

This suggests that the ability of an observation network to determine fossil fuel emissions depends on the parameters 

to be optimised in the model. Process-parameter optimising models could benefit from spatially well-defined 

observation areas. On the other hand, spatial flux-optimising models may benefit from more representative 

observations covering larger footprints. Before deducing consequences from this hypothesis, it has to be confirmed 

by a better designed OSSE.  
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4 REQUIREMENTS FOR AN URBAN FOSSIL FUEL OBSERVATION SYSTEM 

Based on the experiences and results of Task 1.2 we now present the scientific and technical requirements for an 

urban fossil fuel observation system. 

4.1 Lessons learned from the RINGO approach 
The advantages of the RINGO two-station approach compared to the regional background approach are obvious: 

1. smaller uncertainties in the experimental ffCO2 estimation 
2. intrinsic correction of nuclear 14CO2 contamination effects 
3. footprint focusing on the emission area. 

Especially for urban observations, the focus on the urban emission area is essential to be able to ultimately attribute 

observed emission changes to the urban area. Since in most countries the emissions are concentrated in urban areas, 

this may also help to quantify changes in national total emissions, although we recommend to study the two scales 

independently at first. 

The RINGO approach has proven to be successful in exploiting synergy effects between the existing ICOS atmosphere 

network and an adjoined partner station. To allow the use of 14CO2 measurements in such a setup, it has to be ensured 

that the enclosed target area does not contain any nuclear 14CO2 sources. Also nuclear facilities directly upwind of the 

urban area have to be avoided. As a rule of thumb, we suggest that nuclear facilities with an emission of 0.1TBq/a 
14CO2 should be at least 70 km to 100 km distant from the study area if they are located in the upwind catchment area. 

The example of the Rhine Valley showed that the RINGO approach is still applicable when rural landscapes are in 

between the two stations in addition to the urban area. The adjoined partner station, has to be located in a region 

with low fossil emissions. 

To allow model-independent interpretation of the urban observations it is important that the samples are taken during 

constant mixing conditions. To best assure this, two criteria are important. First, both stations have to sample the 

same air mass. Second, entrainment fluxes should be prevented as those can disrupt the causal relationship between 

the upwind and downwind measurements. The trajectory forecast system developed within this project allows an 

automatic sampling at both stations assuring the criteria of the same air mass. In addition, information on the stability 

of the vertical mixing conditions must be available at both stations. In practice this implies that CO2 and/or 222Rn 

profiles should be present at both stations to estimate the stability of the vertical mixing. Information on the vertical 

structure of the atmosphere could also be derived from Lidar or ceilometer measurements, which were however not 

available for this project. 

The usability of flask 14CO2 analyses can be significantly increased if the compatibility of the observed meteorological 

situation with the constant mixing conditions is checked before the 14CO2 analysis. For this a near real-time 

determination of the potential nuclear 14C contamination based on near real-time footprints is required before the 
14CO2 measurement so that only those samples with a low 14CO2,nuc contamination are analysed. 

The use of surrogate tracers for the semi-continuous determination of ffCO2 is promising, but the Rhine Valley and 

Paris results also showed that findings cannot be transferred from one city to another and the relationship between 

the surrogate tracer and the ∆ffCO2 must be established individually via the use of 14CO2. To further interpret the 

observed ffCO2 enhancements and especially the non-fossil bias, a model adapted to the problem and the scale is 

needed.  

4.2 Could the RINGO approach be incorporated in the ICOS monitoring network? 
We showed that it is possible to perform urban observations using the RINGO approach in the ICOS monitoring 

network. A first screening of the surroundings of ICOS atmosphere stations showed that the RINGO approach could 

be extended to other European regions. Table 12 shows 13 European cities, their population and their approximate 

distance to a neighbouring ICOS atmosphere station. The RINGO approach could be taken up by the ICOS network to 

enhance the capabilities of ICOS to observe urban areas. An adjoined RINGO partner station needs in-situ observations 

of CO2, CO, 222Rn and meteorology. Ideally, either for 222Rn or CO2 also profile information should be collected. The in-

situ instrumentation has to be supplemented by an ICOS flask sampler for the 14CO2 observations. The costs for such 
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an adjoined RINGO station can roughly be derived from the ICOS Handbook amounting about 200k€ investment, 

provided that a suitable tower can be found. The annual workload for maintenance of the station would be, also based 

on information from the handbook, about 4-5 PM. 

 

 

Table 12: European cities in the vicinity of ICOS stations. 

City Population ICOS Station Distance 

Paris 10'000'000 Saclay 10km 

Karlsruhe 300'000 Karlsruhe 15km 

Orleans 140'000 Trainou 20km 

Utrecht 1'700'000 Cabauw 20km 

Groningen 200'000 Lutjewad 25km 

Aachen 250'000 Jülich 25km 

Bremen 550'000 Steinkimmen 25km 

Rotterdam 600'000 Cabauw 40km 

Köln 1'000'000 Jülich 40km 

Den Haag 550'000 Cabauw 45km 

Berlin 3'800'000 Lindenberg 50km 

Milano 1'300'000 Ispra 50km 
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6 DEFINITIONS, ACRONYMS AND ABBREVIATIONS 

BG Background 

CBW Cabauw 

CHE CO2 Human Emissions 

CHIMERE 
A multi-scale chemistry-transport model for atmospheric composition analysis 
and forecast 

COSMO-D2 Consortium for Small-scale Modeling, German version 2km resolution 

∆14CO2 Radiocarbon in  atmopsheric CO2 

∆14CO2, bio  Radiocarbon in  atmopsheric CO2 due to the biogenic contribution  

∆14CO2, nuc  Radiocarbon in  atmopsheric CO2 due to the nuclear contribution 

∆14CO2, res Radiocarbon signature of the respired organic material 

CRL Central Radiocarbon Laboratory 

ECMWF European Center for Medium-Range Weather Forecasts 

EDGAR Emission Database for Global Atmospheric Research 

ERA5  

ERIC European Research Infrastructure Consortium 

ffCO2 fossil fuel CO2 

ΔffCO2 fossil fuel CO2 enhancement 

FF fossil fuel 

FRE Freinsheim 

GHG Green House Gas 

GNS Gonesse 

HEI Heidelberg 

HR Heterotrophic respiration 

IAEA International Atomic Energy Agenc 

ICOS Integrated Carbon Observation System 

IG3IS Integrated Global Greenhouse Gas Information System 

INFLUX Indianapolis Flux Experiment 

LSCE Laboratory for Sciences of Climate and Environment  

MAS Maasvlakte 

MR Misfit reduction 

NEE Net Ecosystem Exchange 

NPP Net Primary Productivity 

NRT Near Real Time 

ORCHIDEE Organising Carbon and Hydrology In Dynamic Ecosystems 

OSSE Observation System Simulation Experiment  

RADD RAdioactive Discharges Database  

RUG Rijks University of Groningen, the Netherlands 

RINGO Readiness of ICOS for Necessities of Integrated Global Observations 

SAC Saclay 

STILT Stochastic Time-Inverted Lagrangian Transport 

TNO 
Toegepast Natuurwetenschappelijk Onderzoek (TNO; English: Netherlands 
Organisation for Applied Scientific Research) 

TRN Trainou 

UHEI University of Heidelberg 

CO2-USA CO2 Urban Synthesis and Analysis 

UTC Coordinated Universal Time 

VERIFY VERIFYING GREENHOUSE GAS EMISSIONS 

VPRM Vegetation Photosynthesis and Respiration Model  
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WU Wageningen University  

WRF Weather Research and Forecasting  
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7 APPENDIX A 

Values used for calculating the ‚true‘ emissions in the dynamic fossil fuel emission model. 

Table A1 gives the national total Energy use for 2016 is taken from the UNFCCC (https://unfccc.int/process-and-

meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-

annex-i-parties/national-inventory-submissions-2019) CO2 emission factors in kg(CO2)/TJ per sector and further 

separated into different fuel types or subcategories is given along with their respective shares in Table A2 and taken 

from Super et al., 2020a).  

Table A1: Energy use [PJ/yr] in 2016 per country per sector 

PJ/yr in 
2016 

Public 
Power 

Industry Other 
stationary 

Road 
Transport 

Shipping 

AUS 161.01 158.02 120.04 150.8 0.14 

BEL 254.82 203.68 383.16 172.455 5.63 

CZE 582.9 140.13 178.46 121.935 0.17 

FRA 585.52 731.9 1262.1 845.07 20.0 

DEU 3515.68 1516.34 2069.16 1066.98 26.11 

LUX 3.75 15.23 25.22 37.045 0.01 

NED 868.96 427.43 599.52 199.74 13.93 

POL 1702.42 338.92 618.77 362.94 0.29 

CHE 43.41 66.5 194.77 100.28 1.54 

GBR 1716.77 620.58 1485.23 787.845 72.3 

 

Table 2: Sector information on emissions 

Name Emission factors [kg/TJ] 
 

Fraction of total [-] 

Public power gas                        56100000 0.38 

Public power coal                      101000000 0.62 

Industry                                75700000 1.00 

Other stationary combustion 
consumer   

 58900000 0.90 

Other stationary combustion 
glashouses 

 56100000 0.10 

cars highway                            36200000 0.47 

cars middle road                        36200000 0.28 

cars urban road                         36200000 0.25 

heavy duty highway                      36650000 0.56 

heavy duty middle road                  36650000 0.24 

heavy duty urban                        36650000 0.20 

shipping ocean                          77600000 0.79 

shipipng inland                         73000000 0.20 

shipping recreational                   71000000 0.01 
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8 APPENDIX B  

 

In Appendix B, the national fossil fuel (FF) and net ecosystem exchange (NEE) misfit reductions (cf. 3.4) are given for 

France, Belgium, The Netherlands and Germany. Each table summarize the misfit reductions for both networks and 

the different sampling strategies. The average is misfit reductions gives double weight to France and Germany to 

account in a rough first attempt for the different country sizes. 

 

Table B1: Fossil fuel (FF) and net ecosystem exchange (NEE) misfit reductions for the LSCE BIOhard model 

configuration. The upper table shows the results for the different sampling strategies of the ICOS network. 

The lower part shows the results for the different sampling strategies of the RINGO network. (*) The 

average takes into account the double weight of France and Germany 
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Table B2: Fossil fuel (FF) and net ecosystem exchange (NEE) misfit reductions for the LSCE BIOsimple model 

configuration. The upper table shows the results for the different sampling strategies of the ICOS network. 

The lower part shows the results for the different sampling strategies of the RINGO network. (*) The 

average takes into account the double weight of France and Germany 
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Table B3: Fossil fuel (FF) and net ecosystem exchange (NEE) misfit reductions for the LSCE WU model configuration. 

The upper table shows the results for the different sampling strategies of the ICOS network. The lower part 

shows the results for the different sampling strategies of the RINGO network. (*) The average takes into 

account the double weight of France and Germany 

 

 

 

 


