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Abstract 

The biosphere-atmosphere exchanges of methane (CH4) and nitrous oxide (N2O) are important 

components of carbon and nitrogen cycles of several ecosystems, like peatland, cropland, grassland, 

marshland and lakes. For this reason, Eddy Covariance (EC) flux measurements of these two greenhouse 

gases are necessary within ICOS flux tower network. Commercially available fast-response analyzers for 

CH4 and N2O have recently become more sensitive, more robust and easier to operate, giving the 

possibility for long term EC flux measurements. Nevertheless, the complex spatio-temporal dynamics of 

CH4 and N2O exchanges and the non-linear relationships with multiple biotic and abiotic drivers make the 

flux data processing and gap-filling more challenging than for CO2. Background fluxes of CH4 and N2O are 

often close or below the detection limit of the EC system requiring novel methodological approaches for 

unbiased results and long-term budgets. 

 

In this report we extend the current ICOS measurement protocol recently published in Nemitz et al (2018), 

providing further guidelines, tools and recommendations in particular on the following methodological 

aspects: 1) Data acquisition and synchronization; 2) Overflow inlet system; 3) Raw data despiking; 4) Time 

lag estimation; 5) Spectral correction approaches for high frequency loss; 6) Friction velocity filtering; 7) 

Gap-filling; 8) Additional guidance on the conditions under which site conditions fluxes of CH4 and N2O are 

sensible to measure with EC approaches. 

Results, presented in this report and in Nemitz et al (2018), will be used by the Ecosystem Thematic Center 

(ETC) to compile an instruction document for the Station PIs, as well as they will be implemented in data 

processing chain at ETC in order to produce L2 ICOS data related to CH4 and N2O EC fluxes.  
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1. INTRODUCTION 

 
Methane (CH4) and nitrous oxide (N2O) are the most important non-CO2 greenhouse gases. The knowledge 

of their biosphere-atmosphere exchange rates and their short- and long-term budgets are particularly 

relevant for several ecosystem types, like peatland, cropland, grassland, marshland and lakes. In principle, 

eddy-covariance (EC) flux measurements of CH4 and N2O at ICOS sites are mandatory for all Class-1 

observations stations and further recommended for Class-2 sites. However, it may be demonstrated for 

individual stations that annual budgets of CH4 and/or N2O are not measurable by EC following the flux 

limits provided in the first ICOS Protocol Paper (Nemitz et al., 2018). 

Where fluxes are measured by EC, the latest generation of CH4/N2O gas analysers is now capable to 

measure fluxes near their background level (Peltola et al, 2014; Rannik et al, 2015), which can still add up 

to a considerable fraction of the annual budget. One crucial difference between the fluxes of CO2 

compared with CH4 and N2O is that the carbon dioxide (CO2) flux tends to be strongly bi-directional at the 

diurnal scale and that the annual budget for ecosystems tends to be a relatively small difference between 

a large downward component during the day and a large upward component during the night, which 

makes it particularly important to quantify both components correctly. The flux of N2O tends to be upward 

for most of the time, whilst for CH4 both uptake (oxidation) and emission are observed, but typically 

change between sites or seasonally at a given site, rather than at the diurnal cycle. Thus, the annual 

budget of N2O and CH4 is much less sensitive to the accuracy of corrections that preferentially apply during 

day or night-time. By contrast, for N2O in particular, the flux can be highly sporadic, and annual emission 

can be entirely dominated by the fluxes during a few days, e.g. related to fertiliser applications, rain 

episodes or freeze-thaw cycles. As a result, unlike chamber approaches, the eddy-covariance method is 

ideally suited for capturing the high emission events with good spatial representativeness and temporal 

coverage, but it may well be challenged by the small fluxes during the remainder of the year.  

Within the ICOS network, there are already labelled Ecosystem Stations, where CH4/N2O exchange have 

been measured in the past and the experience gained at these sites have been crucial for writing a state 

of art protocol including a comprehensive set of recommendations related to the instrument setup and 

data processing (Nemitz et al, 2018).  Most of the methodological approaches introduced in the current 

protocol are specific for estimating small fluxes which are often close to the detection limit of the EC 

system. However, Nemitz et al (2018) have recognized the need to further investigate and improve 

methodological approaches especially related to the data processing and gap-filling. 
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In this report we aim to provide further guidelines for eddy-covariance flux measurements of CH4 and 

N2O, focusing in particular on the following critical aspects: 

 

- Data acquisition and synchronization 

- Overflow inlet system 

- Raw data despiking  

- Time lag estimation 

- Spectral correction approaches for high frequency loss 

- Friction velocity filtering 

- Gap-filling  

- Additional guidance on the conditions under which site conditions fluxes of CH4 and N2O are 

sensible to measure with EC approaches 

 

For each of these aspects, we present novel theoretical approaches, algorithms and experimental setup 

in order to advance existing methods and provide state of art guidelines to the ICOS Ecosystem 

Community.  

2. DATA ACQUISITION AND SYNCHRONIZATION 

2.1 Background information on the modern timing protocols for hi-speed data flows 

There are two main modern timing protocols broadly available for a range of computing devices: the older 

network time protocol (NTP) and the newer precision time protocol (PTP). These two protocols do not 

perform equally well when it comes to handling collection and alignment of high-frequency data 

flows. Excerpts below, from IEEE 1588 Standard (Eidson and Lee, 2002) and Rockwell Automation timing 

protocol guide (Matson, 2013) provide a clear and concise explanation of differences between the two 

timing protocols.  

NTP is used for ‘application-level’ synchronization: 

● Coarse level granularity 

● Requirement for synchronization guarantee does not exist 

● Example: time-stamping error log files 

● Sync Accuracy NTP/Ethernet 100 milliseconds 

● About 99% are synchronized within 1 second to the synchronization peer 

PTP is used for precision synchronization: 
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● Mission-critical applications 

● Dedicated hardware to minimize on-path issues 

● High-end algorithms to eliminate network & equipment jitter 

● Sync Accuracy PTP Ethernet 20-100 nanoseconds 

● About 99% are synchronized within 100 nanoseconds to the synchronization peer on a network 

specifically designed for IEEE-1588 

● Software-based PTP solution has an accuracy of about 100 microseconds, still several orders of 

magnitudes better than NTP 

2.2 Implications of the timing protocols for 10-20 Hz flux measurements 

There are two separate key issues (and a number of smaller issues) with different clocks operating on 

different devices. One key issue is the clock drifts - somewhat consistent time delays and related increases 

and decreases in the timing of the sampling. These can be linear and non-linear and can go backward and 

forward for a period of time, often as a result of changes in individual clock temperatures. The second key 

issue is inconsistent intervals between the individual sampling points, sometimes called “jitter”, often as 

a result of clock quality, timing protocols, electronics interferences, etc. The first issue is important for 

any measurements (e.g., open-path, closed-path, 3D motion removal etc.) because it leads to a de-

correlation between the signals coming from the sonic anemometer with one clock and the signals coming 

from another device with a second clock. This issue can be significantly reduced by frequently sending 

GPS-PTP time via NTP timing protocol to all the NTP-enabled devices on the flux station (e.g., GPS->PTP-

>NTP route). The second issue is less important for closed-path devices, with smoothed and attenuated 

time series and effective frequencies well below 10 Hz, but it is crucial for measurements where high-

frequency point-by-point data adjustments are fundamental to the flux quality (e.g., point-by-point 

conversion of density to dry mole fraction, point-by-point 3D motion removal from 3 wind components, 

etc.). In such cases, the small shifts in sampling intervals due to jitter will cause the effect opposite to the 

one desired - worsening the signal that was supposed to have been improved by the adjustment. Since 

the synchronisation errors and timing uncertainties fundamental to NTP timing protocol reach up to 100 

ms, it is absolutely unacceptable for clock synchronisation when doing any point-by-point corrections at 

sampling rates of 10-20 Hz, and a much more accurate timing protocol (such as PTP) must be used in these 

cases. As a result, all the devices used in point-by-point adjustments need to be either PTP-compatible, or 

at least be able to provide ways for PTP timing to be implemented. 

GPS-PTP based microcomputers can use Ethernet inputs from PTP-enabled devices to achieve true PTP 

time synchronization. They can also use RS232, RS485 or Ethernet with compatible non-PTP-enabled 
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devices and still achieve synchronization substantially similar to the true PTP synchronization using the 

method described in Fratini et al (2018), along with further details and implications of precise timing for 

stationary EC flux measurements. 

2.3 Resulting choices for accepting high-speed data flows from non-PTP CH4/N2O gas 

analysers  

If using GPS-PTP based microcomputer (such as, for example, Smartflux used already in over 50% of ICOS 
sites) as both a system master clock and a fast data collector/integrator, two fundamental solutions may 
be considered. One actual solution is available now, and one potential solution may be available in the 
future. Both provide significantly improved synchronization in comparison with the present 
communications, stand-alone NTP and various legacy timing protocols, as described above in Section 
2.2.3. The first solution uses GPS->PTP->NTP time synchronisation to prevent or greatly reduce clock drifts. 
This solution is available and ready to use as of May 2020. It uses a combination of the hardware and 
software in GPS-PTP based microcomputer SmartFlux models 2 and 3 to frequently push GPS-PTP time 
into NTP-enabled CH4 and N2O gas analysers. The CH4 and N2O time series will still have to be merged with 
sonic anemometer and CO2/H2O gas analyser data afterwards during post-processing, based on the new 
precise timestamps, and then can be processed further by ICOS ETC flux processing server. Note that files 
should be submitted to the Carbon Portal (CP) as they are, with their respective (but now synchronised) 
timing, and then they will be merged by ETC. The GPS->PTP->NTP time synchronization is designed to 
work with selected analyser models standardized across the entire ICOS network (currently, Aerodyne – 
QCL, Los Gatos - GGA-911, and Picarro - G2311-f) but potentially could work with other models equipped 
with Ethernet access and enabled NTP timing protocol. The SmartFlux software update to at least version 
2.2.49 is required to implement this solution. The new software can be downloaded from here: 
https://www.licor.com/env/support/SmartFlux-2/software.html?Highlight=SmartFlux2. Detailed 
instructions on implementing the update are available here: 
https://www.licor.com/env/support/SmartFlux/topics/smartflux-software-
update.html?Highlight=SmartFlux#UpdatetheSoftware). The second solution requires the 
implementation of GPS->PTP, or stand-alone PTP timing protocol, running on the CH4 and N2O gas 
analysers themselves. In this solution, integrating the PTP-stamped data together with sonic anemometer 
and CO2/H2O gas analyser directly inside the GPS-PTP based microcomputer not only removes the clock 
drifts, as in the first solution, but also greatly reduces the high-frequency jitter. As a result, the processing 
of all data can be done in near-real-time on-site, or later on ICOS ETC flux processing server. This solution 
is in principle doable, provided collaboration from the CH4 and N2O gas analyser manufacturers and so 
far, this has not been one of their priorities. 
Currently, none of the currently used CH4 and N2O gas analysers have an implemented PTP timing 
protocol.  Software changes for the GPS->PTP route could be a major effort and will need to be assessed 
by different analyser manufacturers. Embedded software along with the communication and integration 
of data will need to be made for each specific model of the analyser, and then further tested using actual 
specific models. This will require a high degree of coordination between various manufacturers, and will 
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result in significant additional software development and extended timelines. For these reasons, the GPS-
>PTP synchronisation only remains a potential solution. 
If not using existing GPS-PTP based microcomputers (like Smartflux or others), the researchers will need 
to identify or build such a device, configure it and test the entire workflow thoroughly. Specifically, one 
needs to build a network-wide device with GPS-PTP timing, ability to push PTP timing into current NTP-
based CH4/N2O analysers and further on to the timed components of the system such as data acquisition 
cards, and ability to output data in ICOS format. Then, one needs to be able to do PTP-timed data 
extraction and logging of the sonic anemometer, all other gas analysers and other fast instrumentation. 
Finally, one needs to make sure that such a solution is compatible with BADMs and EddyPro engine used 
by ICOS for central processing of raw data.  

3. THE OVERFLOW INLET SYSTEM 

3.1 Background 

With fluxes of CH4/N2O being often small for an extended period of time, the ICOS CH4/N2O EC 
Protocol Paper (Nemitz et al., 2018) recognised the processing of fluxes near the detection limit as a 
particular challenge for these compounds. When fluxes are small over an extended period of time, it 
is difficult to use the experimental approach to assess the inlet response time. In addition, the use of 
cross-covariance maximisations (CCM) to establish the time lag between the vertical wind velocity 
component and the gas mixing ratio can significantly bias the flux towards larger (absolute) values 
(Langford et al., 2015; Nemitz et al., 2018; Kohonen et al., 2020). There are several potential 
approaches to deal with these uncertainties regarding small fluxes. A good approach is to derive 
response and time lag from another compound, measured in the same instrument, which shows 
larger fluxes, as long as the compound shows similar properties in terms of tube wall interaction. For 
example, for N2O a concurrent measurement of water vapour is not suitable, but of CO2 likely is and 
CH4 and CO would be suitable as long as their fluxes are sufficiently large. This method of time-lag by 
proxy gas has also been used for other compounds showing small fluxes such as VOCs, CO and COS 
(e.g. Cowan et al., 2018; Kohonen et al., 2020). An alternative, second approach, statistical pre-
treatment of the data to remove spurious correlations and identify statistically significant peaks is 
explored in Section 5 below. 

Here, we explore the utility of a third, experimental, approach which was raised by Nemitz et al. 
(2018) as a possibility: an inlet overflow system is used to periodically deliver a constant reference 
gas to the analyser. From this system, three characteristics of the EC setup can be derived: (a) 
tube/analyser transport time-lag, (b) associated time-response and (c) instrument noise. Such 
experimental setups appear to have been used in the literature to quantify flux detection limits (e.g. 
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Shurpali et al., 1993; Eugster and Merbold, 2015), but have not explicitly been characterised or tested 
for routine operation. 

3.2 Description of the system 

Two eddy-covariance systems for the measurement of fluxes of nitrous oxide (N2O) and were 
operated at the Easter Bush grazed, managed grassland site (3.2065 W, 55.8655 N, 190 m a.s.l.) 
in Scotland, for two periods during the 2019 growing season. First, a dual-laser Quantum Cascade 
Laser instrument (QCL, Aerodyne) was operated, measuring N2O, CO and H2O with one laser, and 
NO2 and H2O with the other, at 10 Hz. Then a single-laser QCL instrument was operated to 
measure N2O and carbon dioxide (CO2) was from August to November 2019. Carbon dioxide 
fluxes are relatively large at the site in summer (typically in the range -20 to +20 µmol m-2 s-1); in 
contrast, N2O fluxes are usually small (< 8 nmol m-2 s-1) with episodic peaks of up to 100 nmol m-2 
s-1 (e.g. Jones et al., 2011). The eddy-covariance system was based on an ultrasonic anemometer 
(Windmaster Pro; Gill Instruments) operating at 20 Hz. The air was sampled from 25 cm below 
the centre of the anemometer’s head through a 15 m-long Dekabon tube of outer diameter 6.1 
mm (¼’’). The effective measurement height was 2.5 m and the lateral separation between the 
inlet and the centre of the anemometer’s averaging volume was 9 cm (Figure 1). The inlet was 
fitted with a normally-closed solenoid valve to allow for injection of compressed air, near the 
inlet, with concentrations of N2O and CO2 above typical ambient values. The injection pressure 
of the compressed air was adjusted to obtain a small overflow at the inlet to prevent the ingress 
of ambient air whilst minimising pressure fluctuations. A custom LabViewTM program was used 
to automate the actuation of the solenoid valve at user-defined intervals and to record both the 
measurement data (wind and gas concentration) as well as the valve status.  

   

Figure 1. (a) Schematic of the setup. (b) Photograph of the inlet and the distances involved. 
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3.3 Determination of system-specific parameters 

Instrument response time and experimental transport time lag (from time point of injection to 
detection by the gas analyser) were determined from 30-second gas injection events, which were 
programmed to occur every 2 to 3 hours. Additionally, instrument noise (standard deviation of 
the measured gas concentration during the last 2 minutes of injection) and measurement 
precision (Allan variance over 4 minutes when the measured gas concentration was deemed 
stable) were estimated from longer 5-minute injections scheduled to occur typically 3 times a 
week (Figure 2). 

The experimental transport time lag (Texp) can be expressed as a sum of setup-specific terms:        
    

𝑇"#$ = 𝑇&'(" + 𝑇*(*&+,"- + 𝑇./ + 𝑇*012*1'3(       (1) 

Here Tline is the gas travel time through the sampling tube, Tanalyser is an analyser-specific response 
time (a priori unknown), TVT is the gas travel time from valve to T-piece (Figure 1) and Tactuation is 
the actuation time of the solenoid valve (unknown but assumed to be negligible). 

Similarly, the theoretical “eddy-covariance” time lag (𝑇14"356 ) can be expressed as in Eq. 2:                                                
  

𝑇14"356 = 𝑇&'(" + 𝑇*(*&+,"- + 𝑇78 + 𝑇8/        (2) 

In Eq. 2, TSI is the horizontal travel time from inlet to sonic (corrected for wind direction and 
speed) and TIT is the travel time from inlet to T-piece. Equations (1) and (2) can be reorganised 
and merged and expressed in terms of Texp:  

     

𝑇14"356 ≅ 𝑇"#$ − 𝑇./ + 𝑇78 + 𝑇8/                (3) 
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Figure 2. Example trace of CO2 concentration recorded across one injection event. 

The time response of the instrument was defined as the time constant τ of the exponential function fitted 
to the decaying tail of the concentration time series (Figure 3):      
  

𝑦 = 𝑦< + 𝐴𝑒{@(1@1B)/E},         (4) 

where y0, A, t0 and τ are fitting parameters. 

 

Figure 3. Exponential decay fit of the decaying part of the N2O concentration signal.   
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The gas analyser time response was evaluated for each 30-s gas injection event (172 events with the dual 

laser QCL and 103 events with the single laser). Additionally, 100 gas injection events were carried out 

with the single laser analyser using compressed air with CO2 concentration closer to ambient (raw data 

not shown). The non-linear regressions were applied in a pre-defined time window (36.4 s to 37.5 s, time 

relative to the start of the injection event). These boundaries were determined empirically for the first 

gas injection file by searching for the temporal range yielding the best fit results, and were then applied 

to all subsequent gas injection events using an automated data processing algorithm coded in R.  

3.4 Flux calculations 

EddyPro version 7.0.6 was used to calculate fluxes of N2O and CO2; time lags were determined by 

covariance maximisation without default. Minimum, nominal and maximum values of the time lag were 

left blank in the raw file description input section, forcing EddyPro to evaluate them from the physical 

properties of the experimental setup (flow rate, length and inner diameter of the inlet line). 

The time lags for CO2 determined by EddyPro were used to shift the high-frequency time series of N2O 

concentrations and vertical wind speed with respect to one another based on the assumption that 

anemometer records are instantaneous and analyser records are delayed. In practice, the concentration 

time series of N2O were truncated by N points (N = acquisition frequency x time lag) at the start of each 

hourly data file. A corresponding portion of length N points was trimmed off the end of the sonic time 

series to ensure that both data series were of equal length. These composite high-frequency data series 

were processed in EddyPro 7.0.6 with a constant time lag of 0.01 s (EddyPro does not allow a 0 s constant 

time lag). Finally, fluxes of N2O were processed in EddyPro 7.0.6 using the median of CO2 experimental 

time lags obtained from the gas injection events. 

3.5 Results from a field test 

3.5.1 Instrument noise 

Instrument noise was found to be instrument-specific and varied considerably between the dual- and 

single-laser analysers used (Figure 4), averaging 0.23 and 0.41 ppb, respectively. Furthermore, the 

frequency stability of the single-laser instrument was poorer than the dual laser’s (Allan variance analysis, 

data not shown), which was perhaps symptomatic of aging optics on the older single-laser instrument as 

both instrument c lasers with similar sensitivity to N2O. The manufacturer quotes a 10-Hz RMS of 0.09 ppb 

for both laser types under optimum operating conditions at typical ambient concentrations (Nemitz et al., 

2018). Instrument noise consists of a constant and a concentration-dependent component, with the 
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proportional noise component becoming dominant at high concentrations (David Nelson, Aerodyne, pers. 

commun.). Thus, the use of a rather large concentration of 982 ppb for the reference gas, i.e. about 3x 

ambient, accounts for much of the difference. 

 

Figure 4. Comparison of instrument noise (standard deviation) for nitrous oxide concentrations measured 
with a single-laser and a dual-laser QCL, respectively. 

 

 
3.5.2 Response time 

The response time also differed between instrument setups with the dual-laser analyser’s time response 

being twice that of the single-laser instrument (Figure 5). Furthermore, the apparent increase of the time 

response seen in Figure 5 was an artefact of the fixed time window used for the derivation of τ by fitting 

of the non-linear regression function (Eq. 4). Nevertheless, it draws attention to a change in the 

instrument, possibly the degradation in instrument performance (CPU limitations and tuning rate). Only 

the periods marked in blue in Figure 5 were used for the subsequent analysis. 
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Figure 5. Consistency and apparent increase in the (e-folding) time response of the single and dual laser 
QCL instruments used in this study. The large change in time response is an artefact of the non-linear fitting 
procedure but this information is symptomatic of a degradation of the performance of the instrument over 
time. 

 

3.5.3 Time lag estimates and effect on average fluxes 

The time lag values for CO2 fluxes obtained by covariance maximisation without default were in good 

agreement with the experimental transport time lag estimate from gas injection events (Figure 7a), but 

this was not the case for N2O for which many EC time lags diverged from (Figure 7b). Stratification of the 

data by whether the flux exceeded the limit of detection (LoD) revealed that low signal-to-noise only 

explained about half of the time-lags that were clearly incorrectly quantified, both for CO2 and N2O. 

Similarly, it was found that u*, relative humidity or the magnitude of the flux itself were also poor 

determinants of poor performance of the time-lag routine. 

The discrepancies observed for N2O time lags were propagated to the fluxes of that gas (Figure 7a): fluxes 

calculated on the basis of time lags from covariance maximisation without default, which were generally 

larger than the experimental time lag values, tended to overestimate the experimental time lag (TL) fluxes, 

in line with the biasing reported by Langford et al. (2015) and Kohonen et al. (2020). This was also the case 

for absolute CO2 fluxes, albeit to a lesser extent than for N2O. However, N2O flux estimates from 

experimental TL were consistent with fluxes obtained by dynamically ascribing time lags from the CO2 flux 

analyses (Figure 7c). This suggests that proxy gas (CO2 in this instance) and overflow inlet both have the 
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potential to decrease the uncertainty and systematic bias which can arise from poor time lag 

determination in fluxes with low signal-to-noise ratios. 

 

Figure 6. Comparison of experimental transport time lags (triangles) and time lags obtained from eddy-
covariance analysis (circles; covariance maximisation without default) for (a) CO2 and (b) N2O. Solid circles 
denote flux values below the limit of detection. 
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Figure 7. Comparison of fluxes calculated with time lags obtained by covariance maximisation without 
default with fluxes calculated with experimental time lags ((a) N2O, (b) CO2). (c) N2O fluxes calculated with 
dynamically ascribed time lags obtained for CO2 (covariance maximisation without default) versus fluxes 
from experimental time lags. 

Table 1. Comparison of the average fluxes of N2O, derived with different time-lag strategies, including (a) 
covariance maximisation of the N2O data, (b) using the CO2 time-lag as a proxy and (c) applying the time-
lag experimentally derived with the overflow inlet. 

Method Mean flux ± SD [nmol m-2 s-1] 

Covariance maximisation 
without default 

0.525 ± 0.557 

TL from CO2 0.408 ± 0.457 

Experimental TL 0.406 ± 0.434  

  

3.6 Recommendations 

The overflow inlet proved to be a reliable way to derive instrument response times, time lags and 

instrument noise. There are advantages and disadvantages to this approach. 

Disadvantages: 

• Both time-lag and response time do not describe the response of the full system. However, for most 

setups the dominant aspects are reflected. The additional time-lag caused by the inlet is very small, 

whilst the time-lag due to sensor separation can be predicted reasonably well from first principles. 

The response time does not cover the effect of sensor separation and spatial averaging. 

• There is no commercial standard setup available and at present each research team would need to 

develop its only hardware implementation. However, if the setup were to become used more widely, 

common implementation schemes would be shared and commercial solutions may appear. 

• In order to automate the analysis of the data additional flags need to be recorded by the data 

acquisition system and interpreted by the analysis routines. 

Advantages: 
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• As a measurement-based approach the overflow inlet does not make any theoretical assumptions 

which may be violated in real measurement situations. 

• The overflow inlet arguable provides the most robust approach for quantifying and tracking 

instrument noise. Although software implementations for noise quantification do exist, based on the 

assessment of the auto-correlation function (Lenschow et al., 2000), these only work for white noise 

and also start to fail if noise levels are small.	

• With the overflow inlet in place it is easy to use it for a number of other useful applications, such as 

long-term stability assessment (e.g. drift, non-white noise characterisation) and periodic automatic 

calibrations. 

The experience with the overflow inlet test has provided some important pointers on what to take into 

consideration for future applications and development: 

1.  Concentration of reference gas. In this trial, we used compressed gas cylinders as reference gases 

rather than (certified) standards of a specified concentration. Whilst this is a very cost-effective way 

of providing a gas at a constant concentration, the concentration is left to chance. In our case, it was 

well above ambient levels for N2O (982 ppb) and also CO2 (4550 ppm). This provided the large step-

change in concentration needed for the time-lag and time-response quantification, but it was not a 

perfect solution for the noise quantification. Because above a certain concentration the measurement 

noise becomes a function of the concentration, our measurements did not directly quantify the noise 

at ambient concentration, although they can be extrapolated to ambient concentrations and also 

allow instrument performance to be tracked with time. An alternative approach would be to modify 

the system to provide first a low (e.g. 200 ppb) or high (600 ppb) gas and then switch to a near-

ambient standard for the characterisation. Note that the measurement of zero gases can be 

problematic with optical absorption instruments as it causes problems in tracking the absorption 

features. The use of specified reference gas concentrations adds cost to the operation of the 

technique because calibration standards, even if not certified, are significantly more expensive than 

compressed gas cylinders. 

2.    Purging of reference gas line. The concentration trace recorded during an injection (Figure 2) shows 

a number of repeatable features. Some are due to the gradual response of the instrument to abrupt 

(even small) pressure changes. A transient dip in the concentration following the rise of the signal 

following the reference gas injection is likely due to a small depletion of N2O in the static reference 
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gas since the last injection. This might be avoided if the injection is carried out twice in short 

succession and only the 2nd injection used for the characterisation. 

Overall, these tests have shown that the overflow inlet provides a robust pragmatic experimental solution 

to estimate time-lag and system response time for low-flux situations based on an objective method, 

which, unlike CCM, leads to unbiased fluxes. Because of the additional complexity and cost in 

implementing, operating and processing the data from the overflow inlet, the use of a laser which also 

measures another compound with a large flux is the favoured approach. This makes the N2O/CO2 and 

N2O/CO2/CO lasers particularly useful for measuring N2O fluxes. However, at sites which already have 

purchased a different laser, or cannot afford purchasing and operating separate instruments for N2O and 

CH4 at sites where both fluxes can be small over long period of times, the overflow inlet would be an 

appropriate solution. 

4. RAW DATA SPIKE DETECTION 

4.1 Background 

Raw, high-frequency, eddy covariance (EC) time series may be corrupted by unexpectedly impulsive peaks 

originating from mechanical or electronic malfunctions of one of the components constituting the EC 

measurement system, or from disturbances due to the presence of insects, to name a few. Spikes 

constitute a particular class of anomalies known as additive outlier and need to be removed to avoid 

biases in subsequent analyses. The size of bias introduced in flux estimates depends on the magnitude of 

the spikes, on their number and, in particular, on the simultaneous occurrence in both the time series 

needed for the covariance calculation. Moreover, their presence can have disturbing effects on estimates 

for such quantities as higher-statistical moments (e.g. variance, kurtosis), ordinary least squares (OLS) 

regression coefficients (e.g. those derived for linear trend removal) and (co-)spectral density (i.e. spikes 

pose a problem for the estimation of reliable spectral correction factors used to adjust for flux attenuation 

due to sensors separation). 

4.2 New despiking routines 

Despiking EC data is challenging because the complex dynamics (e.g. the presence of non-linear trend 

components, structural changes, abrupt changes) and the high and time-varying level of noise 

characterizing high-frequency time series can make it difficult to distinguish features in the time-series 

that are introduced by analyser signal disturbances (spikes) from those introduced by atmospheric 
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turbulence (“good” data). To overcome such difficulties, we evaluated the enforceability of a new 

despiking procedure based on robust functionals. The procedure involves i) a preliminary signal-from-

noise separation to alleviate the confounding effects of time series dynamics, followed by ii) an analysis 

of the distribution of the noise component for the detection of those anomalies representative of spikes. 

To this end, we assume an additive component model as follows: 

x(t) = μ(t) + e(t)           (5a)  

e(t) = σ(t)ε(t) + η(t),          (5b) 

where x(t) is a generic time series observed at time t, μ(t) denotes the underlying signal level, e(t) denotes 

the noise component. To allow heteroskedasticity of the noise component, e(t) is split into a stationary 

white noise process ε(t) with zero expectation and unit variance multiplied by a time dependent standard 

deviation σ(t). The time-varying variance σ2(t) is allowed to change slowly over time, so that we can treat 

it locally as (almost) constant. The spike generating mechanism is represented by η(t) which is zero most 

of the time, but occasionally generates large absolute values.  

For μ(t) signal extraction, we used a robust regression technique based on repeated median (RM) filtering 

(Siegel, 1982), which has been widely demonstrated to perform better than standard filtering methods 

such as running median when time series are characterized by local temporal trends dynamics (Davies et 

al, 2004). For the scale parameter of the noise component σ(t), the Qn estimator by Rousseeuw and Croux 

(1993) was selected because of its suitability to prevent implosion of the estimates when data are 

characterized by extreme low variability as often encountered in EC data (Vitale et al, 2020). Both 

functionals are calculated in moving time windows of small to moderate length to account for the complex 

dynamics of the signal and the heteroskedastic behaviour of the noise component. The RM and Qn 

estimators were performed by means of the R functions implemented in the robfilter (Fried et al, 2019) 

and robustbase (Maechler et al, 2019) packages, respectively.  

Once μ(t) and σ(t) estimated, the spike detection is performed through the examination of outlier scores 

z(t) = [x(t) - μ(t)]/σ(t). Any data point in raw, high-frequency, time series with outlier scores exceeding  ±5 

is detected as spike and removed. 

The effectiveness of the proposed approach was demonstrated via a number of experiments on simulated 

data. In particular, to mimic the heteroskedastic behaviour of EC time series, synthetic time series were 

generated from a first-order autoregressive AR(1) model with heteroskedastic error structure.  To this 

end, we used the Generalized AutoRegressive Conditional Heteroskedastic (GARCH) model popularized 
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by Bollerslev (1986). Such a model originates from econometrics (for more details, the reader can refer to 

the authoritative textbook by Tsay 2005) and has been applied to a wide range of time series analyses 

since it constitutes the standard tool to model time series exhibiting changes in variance and volatility 

clustering (in finance, volatility clustering refers to the observation that large changes tend to be followed 

by large changes, of either sign, and small changes tend to be followed by small changes, see 

Mandelbrot1997). The simulation model specification is as follows: 

 

y(t)=µ(t)+e(t) 

µ(t)=φy(t-1)  

e(t)=σ(t)ε(t) 

σ2(t)=ω + βσ2(t-1) + α[y(t-1)-µ(t-1)]2
, 

 

(6) 

where y(t) is the simulated time series, µ(t) is the conditional mean process generated by a stationary 

AR(1) process with autoregressive parameter φ set equal to 0.975; e(t) is the error term composed by ε(t), 

an innovation series normally and independently distributed with zero mean, unit variance and a finite 

fourth moment, and σ(t), the square root of the conditional variance process generated by a GARCH(1,1) 

process with ω=1e-6, α=0.1, β=0.89. Notice that a high value of β causes σ(t) to be highly correlated with 

σ(t-1) and gives the conditional standard deviation process a relatively long-term persistence. With this 

parameter setting, we simulated 18000 values, as in EC raw high-frequency data sampled at 10 Hz 

scanning frequency within a 30-min interval. 

Successively, each simulated time series was intentionally corrupted with 180 spikes (1% of the 

sample size). The spike locations were randomly selected, and divided into 90 single spikes, 60 spikes as 

double (consecutive) events, and 30 spikes as triple (consecutive) events. Once located, the corresponding 

time series values were multiplied by k = 7 in order to generate spikes of a magnitude similar to those 

observed in real data. Simulations were executed in the R programming environment by using tools 

implemented in the R package fGarch (Wuertz et al, 2019). Each scenario was permuted 99 times. Figure 

8 depicts the realizations of stationary AR(1)-GARCH(1,1) processes simulated with the parameter setting 

as previously specified. 

The skill of the proposed despiking procedure was evaluated in terms of Precision (the fraction of reported 

spikes that truly turn out to be spikes), Recall (the fraction of ground-truth spikes that have been reported 

as spikes) and F-Score (a measure that combines Precision and Recall metrics; the closer to 1 the F-Score, 

the greater the effectiveness of the despiking method). To aid the comparison, the metrics were 

calculated also for existing despiking methodologies.  
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Figure 8. Illustrative examples of synthetic time series generated from AR(1)-GARCH(1,1) processes (black 
lines) contaminated by spikes (red points). The model parameters are φ=0.975, ω=1e-6, α=0.1, β=0.89. 
 
As reported in Table 2, we observed superior performance of the proposed approach compared to existing 

methodologies with Precision, Recall and F1-Score metrics equal to 0.99, 0.81 and 0.89, respectively. The 

approach by Starkenburg et al (2016) showed excellent results in terms of Precision (0.99) but a very low 

performance in terms of Recall (0.08). Approaches by Vickers and Mahrt (1997), Metzger et al (2012) and 

Mauder et al (2013) exhibited moderate performance levels (all metrics resulted lower than 0.75). 

 
 

Table 2. Performance evaluation metrics of despiking methods 

Despiking method Precision Recall F1-Score 

Perfect performance 1.00 1.00 1.00 
Vickers and Mahrt (1997) 0.63 0.53 0.58 
Metzger et al (2012) 0.69 0.59 0.63 
Mauder et al (2013) 0.74 0.33 0.46 
Starkenburg et al (2016) 0.99 0.08 0.14 
this work 0.99 0.81 0.89 

 

Although promising results were achieved, further examinations are required. In particular, performances 

need to be evaluated over a wide range of scenarios, including CH4 bursts related to ebullition events 

and/or presence of ruminants in the field. Furthermore, although not prohibitive for the processing of EC 

data, it would be straightforward to reduce the computational demand required by the RM and Qn 

estimators. An in-depth description of the above considerations will be reported in Vitale et al (in prep), 

while a software implementation suitable to EC data processing will be freely available in the R software 

package RFlux (Vitale et al, 2019) 
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5. TIME LAG DETECTION 

5.1 Background 

As already introduced in Section 3, the exact detection of time lag is essential to properly synchronize EC 

time series and achieve unbiased estimates of flux covariances. One of the most used procedure consists 

of identifying the optimal time lag in correspondence of the time lag that maximizes (in absolute terms) 

the covariance between vertical wind speed (w) and the atmospheric concentrations of the scalar of 

interest (e.g., CO2, H2O, CH4, N2O), within a plausible temporal window. However, such an approach is 

effective only under stationary conditions and when the signal-to-noise ratio is moderate to high. In all 

other circumstances, the optimal time lag detection becomes difficult to achieve. As a consequence, there 

is a concrete risk to introduce significant bias in flux estimation, in particular when flux exchanges are of 

small magnitude (Langford et al., 2015). 

5.2 Description and evaluation of a new method for time lag detection 

To overcome such difficulties, we evaluated the enforceability of a new time lag detection procedure 

based on what is known in the statistical literature of time series analysis under the name of prewhitening 

(the interested reader can refer to the leading textbook on time series analysis by Cryer and Chan (2008) 

to have a good exposition of the mathematics underlying the method). In summary, given two EC time 

series x (e.g. a scalar concentration) and y (e.g. vertical wind speed), the proposed procedure for time lag 

detection consists of the following steps: 

I. Determine a time series model for the x-variable, e.g. via an autoregressive model of order p; 

II. Filter the y-variable series using the x-variable model (i.e. apply the same transfer function model 

for x to y), this constitutes the pre-whitening step; 

III. Estimate the cross-correlation function (CCF) between the residuals from x-variable model (step 

1) and the filtered y-values (step 2); 

IV. Detect the (statistically) significant peak of the CCF as representative of time lag between x and y 

time series (notice that prewhitening makes it possible to approximate critical values of the CCF 

as ±𝑧J/K/√𝑛  where 𝑧J/K is the critical value of a Standard Normal distribution for a given 

confidence level and n is the sample size). 

 

In the following, we show some illustrative examples of the application of the proposed procedure. To 

better outline the potential benefits deriving from prewhitening we performed a simulation study. The 
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main purpose of the simulations is to create pairs of reference time series with known covariance 

structure that, after being misaligned with a specific time lag, allow an objective evaluation of the ability 

of the procedure to detect the “true” time lag. In particular, we first simulated three bivariate systems of 

stationary autoregressive (AR) processes (x,y) with ø=0.99 and correlation equal to 0.10 (moderate), 0.05 

(low) and 0 (independent processes), respectively (for more detail see Vitale et al, 2020, Appendix C). 

Subsequently, y time series was shifted of 20 timesteps to simulate a time lag.  

 

 
Figure 9. Three bivariate systems of simulated first-order autoregressive processes (x,y) with pre-fixed 
correlation structure equal to 0.10 (panel a), 0.05 (panel b) and 0 (independent processes, panel c) and 
their cross-covariance function and cross-correlation function after prewhitening. Blue and red dashed 
lines indicate the 0.05 and 0.01 significance level of the crros-correlation estimates, respectively.  
 
The pairs of simulated AR processes are shown in panels a-c of Figure 9 with their cross-covariance (Cross-

Cov) and cross-correlation functions, this last estimated after prewhitening (Cross-Cor PW) procedure. As 

expected, both the Cross-Cov and Cross-Cor PW exhibit a dominant peak at lag 20 in case of the bivariate 

system with correlation structure equal to 0.10. When the correlation structure between time series 

decreases, the shape of the Cross-Cov function becomes more difficult to interpret. In panels (b-c) the 

dominant peak of the Cross-Cov in fact disappears, making it difficult to detect the time lag by means of 

the standard maximum covariance procedure. In these circumstances, the risk to obtain biased flux 
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estimates becomes relevant. Notice that such a risk is mainly related to the degree of serial dependence 

and not only to the degree of signal-to-noise ratio. The higher the degree of serial dependence, the higher 

the probability of incurring in the so-called spurious correlations.  

By prewhitening time series such a risk is completely avoided, because the cross-correlations are 

estimated between serially uncorrelated residuals resembling white noise processes. The evaluation of 

the Cross-Cor PW functions clearly shows the presence of statistically significant peaks at lag 20 between 

correlated time series (a-b panels of Figure 10, while no peak (at 0.01 significance level) was detected 

between independent time series, as expected (panel c). 

 

 
Figure 10. Illustrative examples of time lag detection by means of prewhitening on real EC data. From left 
to right: vertical wind speed (w), nitrous dioxide (N2O), cross-covariance estimates, cross-correlation 
function after prewhitening. Blue and red horizontal dashed lines indicate the 0.05 and 0.01 significance 
level, respectively. Vertical cyan dashed lines denote the optimal time lag. 
 
Illustrative examples of time lag detection by means of prewhitening on real EC data (for more details 

about data and EC system setup see Section 3.2) are given in Figure 11. For the time series depicted in the 

top panel (a), both the cross-covariance function and the cross-correlation function after prewhitening 

detected the optimal time lag at 1.5 s. In this case, the use of prewhitening may not be necessary since 

the Cross-Cov exhibits a dominant peak in absolute terms. A different situation occurs in cases of time 
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series depicted in the b-c panels. Here the time lag detection by means of the covariance maximization 

could lead to biased flux estimates since the optimal time lag should be detected when the Cross-Cov 

function reaches the minimum, not the maximum (in absolute terms). Time lag detected by means of the 

cross-correlation function after prewhitening reveals instead another story. In both cases and as expected 

for this EC system, the cross-correlation function exhibits a dominant peak (statistically significant at 0.01 

level) at 1.5 s. Notice that the statistical significance of correlations is evaluated independently from the 

flux magnitude, which in these cases are close to zero.  

 

Figure 11. Time lag detected by means of cross-covariance maximization (CCM) approach (panel a) and 
prewhitening (panel b) on real EC data. For both procedures the optimal time lag was detected in a 
plausible temporal window of 0-10 sec. Dashed horizontal blue line indicate the experimental time lag. For 
more details about data and the method used to calculate the experimental time lag see Section 3. 
 
A comparison of the time lag detected by pre-whitening procedure with those identified by the widely 

used approach based on Cross-Covariance Maximization (CCM) is depicted in Figure 11. Both the 

procedures were performed by detecting the optimal time lag in a plausible temporal window ranging 

from 0 to 10 seconds. Results indicate that time lags detected by pre-whitening are more stable compared 

to those obtained by CCM. Furthermore, the most frequent value of time lag detected was in strict 

agreement with the experimental time lag calculated for this EC system (see Section 3). Large departures 

from the experimental value occur mostly in the case of low magnitude flux derived from raw, high-

frequency, time series affected by strong non-stationary conditions (e.g. abrupt changes in the mean 

levels, severe heteroskedastic behaviour). 



 
 

 27 

An in-depth description of the prewhitening procedure suitable for the automatic and fully-data driven 

ingestion of large EC raw data will be reported in Vitale et al (in prep), while a software implementation 

will be freely available in the R software package RFlux (Vitale et al, 2019). 

6. FREQUENCY RESPONSE CORRECTION METHOD 

6.1 Background 

 
Turbulent flux measurements rely on the fast detection of atmospheric signals. While wind measurements 

can and need to be done in situ, gas concentrations are often measured in analysers that have their 

analytic unit enclosed (closed-path analysers). In such systems, the air sample is transported from the 

position of the sonic anemometer to this analytic unit via a sampling system. Both, the sampling system 

and the analyser dampen the atmospheric signal in the high frequency domain. While the fixed sampling 

interval to, usually, 30 minutes acts as a high-pass filter, the attenuation by the closed-path sensors acts 

as a low-pass filter. The turbulence statistics, i.e. variances and covariances, calculated with the 

attenuated signals must be corrected for both low-pass and high-pass filtering to represent the true 

atmospheric situation.  This correction is called frequency response correction (or spectral correction) and 

it is usually performed based on a priori knowledge of the system transfer function and the unattenuated 

cospectrum. In this  section, we focus on the spectral correction of the low-pass filter effects, only. 

The low-pass filter flux correction factor (CF) is defined as 

𝐶𝐹 =
∫ 63QR
ST
SU

VW

∫ 63QR
ST
SU

XYZ[VW
          (7) 

with CowT the normalized cospectrum of kinematic heat flux w’T’______, which is assumed to be unattenuated, 

HLPF the low pass filter transfer function, f is the frequency in Hz, f1 and f2 are the integration limits set by 

the length of the averaging period and the Nyquist frequency. Spectral correction is part of all current raw 

data post processing software, but there are different approaches to derive the spectral features of the 

eddy covariance systems and to apply the correction to variances and covariances. In this section, we 

present results from investigations on two aspects related to spectral correction and flux calculation in 

non-CO2 GHG eddy covariance flux measurements.  
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6.2 Using power spectra versus cospectra when deriving the spectral transfer function of 
an EC system from measurements with low signal-to-noise ratio 

The way an EC system affects the signal is represented by its spectral transfer function (HLPF), which is the 

relative magnitude of the attenuated signal as a function of natural frequency (f). The HLPF can be 

described analytically, if all quantitative effects of the components of the system are known, which is 

generally not the case with closed-path EC systems. Alternatively, HLPF can be empirically estimated with 

experimental approaches or by comparison with an unattenuated atmospheric signals, the latter being 

the most commonly used approach in turbulence data processing. Previous work has suggested using co-

spectra (Aubinet et al., 1999, Moncrieff et al., 1997, Mammarella et al., 2009) or power spectra (Ibrom et 

al., 2007; Fratini et al., 2012; Sabbatini et al., 2018) for this comparison, a choice which has hence not 

been systematically examined. An important condition for the applicability of either of the approaches is 

the signal to noise ratio (SNR), i.e. the magnitude of the flux compared to its detection limit. If the SNR is 

low, the noise compromises the use of power spectra, as the spectral domain where the turbulent signal 

is small, especially when the sensor is a strongly low-pass filtered, is contaminated by noise, while the 

attenuated reference signal is not.  In order to compensate for this effect, the noise can be subtracted 

from the power spectrum (Figure 11). 

 

a)

 

b)

 
 

 

Figure 11. Example of a noisy power spectrum (CO2, LI-6262 gas analyser, LI-COR, USA, green) and a sonic 
temperature power spectrum (black, Solent R2, Gill Lymington, UK) above a beech forest (June 1996, Sorø, 
DK-Sor) used to determine the parameters of a first-order infinite impulse response filter model (red), (a) 
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after Ibrom et al. (2007), (b) after Aslan et al. (2020). The dashed black line represents the effect of the 
white noise that is also apparent in the original spectrum.  

 

While the example in Figure 11a shows the noise effects very clearly, there are situations, where the noise 

cannot be distinguished as clearly. Since the noise does not correlate with the vertical wind component, 

it is tempting to use co-spectra instead of power spectra for determining HLPF. However, there are 

additional complications, especially the uncertainty in determining the time lag between the vertical wind 

speed and the gas mixing ratio measurements. Desynchronization between the two data pairs for 

calculating co-spectra can have an effect that is very similar to, if not indistinguishable from spectral 

attenuation.  From this, the objective of this analysis is to investigate when which of the two approaches 

should be applied rather than generally prioritise one over the other.  

For a systematic analysis, artificial data were generated based on a set of unattenuated turbulent sonic 

temperature (Ts) time series. The time series were low-pass filtered in time domain with increasing filter 

constants and white noise was added to compensate for the loss of variance. By this, a fully factorial set 

of test data was available. To consider the imperfection of a single throw of the random noise generator, 

the numerical experiment was repeated 100 times and all data were analysed.  For details, see Aslan et 

al. (2020).  The spectral transfer function (HLPF) was then estimated with the power spectral approach 

(PSA) and the co-spectral approach (CSA).  As we work with an infinite impulse recursive filter (IIR), HLPF 

for power spectra is equal to the Lorentzian transfer function H (Ibrom et al., 2007): 

𝐻 = a

abcSdS e
T=

a
ab(KfEW)T

 ,          (8) 

where 𝑓0	is the cut-off frequency in Hz and 𝜏	is the filter time constant in s.  

Based on the results, we developed the approach by Ibrom et al. (2007) further. Their two-step approach 

removed the noise first and then the pure attenuated spectrum was used to fit the spectral model (Figure 

11a). We instead used the measured attenuated spectrum and describe the noise in the regression model:  

𝑓 	7d
jdT
= 	𝑓 7k

jkT
𝐹(𝐻 + 𝑓𝑁 ,         (9) 

where index c stands for the attenuated scalar and index r for the reference spectrum, i.e. usually the 

sonic temperature power spectrum (Aslan et al, 2020). Fn is the normalization factor (Ibrom et al, 2007) 

and N stands for a noise term. For white noise, N is constant, i.e., when multiplied with f and expressed 

as a function of f, a function with a slope equal to 1 with a y axis intercept of N (see stipulated line in 

Figure 11). Multiplication with f on both sites is necessary to separate the pure noise effect (high-

frequency domain) from the turbulent signal (dominating the low and medium frequency domain). 
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We then used thus two alternative PSA for the estimation of H: PSAI07 following Ibrom et al. (2007) or the 

improved approach PSAA20 following Aslan et al (2020). 

Alternatively, we also estimated HLPF with three different co-spectral approaches (CSAs). These CSA were 

using Horst’s suggested HLPF = H (eq. (7), ”CSAH”, Horst, 1997), using 𝐻mno = √𝐻, without (CSAsqrt(H)) and 

with shifted w time series (CSAsqrt(H),sync), i.e. shifting the w time series to achieve maximum covariance 

between w and c. 

 

Figure 12.  Normalised ensemble power spectra (n=70) of artificial sonic temperature time series with 
increasing attenuation (𝜏) and signal to noise ratio (SNR) (Aslan et al., 2020).  The red curves show the 
reference spectra, the solid blue curves the measured spectra, the dashed blue lines the fitted noise, and 
the black curves show the measured spectra after noise removal. The vertical lines mark the frequency 
range used for fitting for noise removal. The lower thresholds of the frequency range are 3, 2.3 and 2 Hz 
for the attenuation levels of 0.1, 0.3 and 0.5 s, respectively. 
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Figure 12 illustrates the effect of different degrees of low-pass filtering (𝜏 = 0.1, 0.3, and 0.5 s) and SNR (5, 

3.3 and 2.5) conditions on ensemble-averaged power spectra of sonic temperature (T) from 70 half-hour 

raw data sets. These are shown on a double-logarithmic scale, where f is natural frequency, ST is spectral 

density, σT
2 is the variance of the un-attenuated T series. The measurement height was 3 m and the 

average wind speed was 2.1 ms-1. Shown are the power spectra of raw measured sonic temperature (red 

lines), and spectra of low-pass filtered and noise superimposed sonic temperature before (dark blue) and 

after (black) noise removal with the method described in Ibrom et al. (2007). The blue dotted lines are the 

curves fitted to the high-frequency end of blue line, then extended towards lower frequencies. The 

vertical lines mark the frequency range used for fitting for noise removal (i.e., 3, 2.3 and 2 Hz for the 

attenuation levels of 0.1, 0.3 and 0.5 s, respectively).  

For comparison, some co-spectra are shown in Figure 13. Contrary to the power spectra, the noise does 

not appear, despite an even lower SNR. Because the noise does not correlate with the vertical wind speed 

(w), co-spectral analysis acts as a filter for noise.  

 

 

Figure 13. Normalised ensemble co-spectra for the original and differently attenuated time series. White 
noise was added at a signal to noise ratio (SNR) of 1.1.  

The results of this analysis are summarised in Figures 14 and 15 for PSA and CSA approaches, respectively. 

The upper panel of Figure 14 shows the variability of the estimated filter time constant 𝜏 when applying 

the five different 𝜏 (panels) and adding noise with different SNR (x axis). The PSAI07 generally approaches 

the expected	𝜏, but fails slightly at low low-pass filtering intensity (small 𝜏) and at high SNR. According to 

our analysis, the estimation of the correct H seems to be perfectly solved with the new approach (Figure 

14 b). In all cases, PSAA20 yields the correct 𝜏	 values with only little deviance. It is not unlikely that the 
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deviance might be caused by the uncertainty of the white noise generator, rather than by the PSAA20 

approach.  The difference in the results is caused by the assumptions made over the frequency response 

of the noise. In the PSAI07 approach, the dependence of the noise of frequency (i.e. the slopes of the 

dashed blue lines in Figure 12) are fitted to the data at the high-frequency end of the spectrum, whilst in 

the improved PSAA20 the slope is fixed to +1 through Eq. (8). At low noise conditions the PSAI07 approach 

derives a slope < +1 which results in erroneous additional noise removal at lower frequency.  

Integrating the noise into the regression model of Eq. (8), solves this issue and also overcomes problems 

in deriving the noise slope in the first place, sometimes accounted with the PSAI07 approach. The spectral 

domains to estimate the noise and H is now found automatically and with large robustness. 

Figure 15 show the results from three different CSA. Using the same H for co-spectra as for power spectra, 

as suggested by Horst (1997) yields systematically too low 𝜏 estimates. Using √𝐻,	 instead, strongly 

overestimates  𝜏 . Only if using the lag-time shifted time series in combination with √𝐻, the correct 𝜏 is 

approached, however, compared to the improved PSA approach (PSAA20) with larger bias and less 

precision.  
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Figure 14. Comparison of the estimated spectral filter time constant (𝜏) based on a) power spectra after 
Ibrom et al. (2007) and b) using the improved power spectral approach (Aslan et al. (2020). The black 
stipulated lines characterise the values of 𝜏 which were used to generate the attenuated time series. 
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Figure 15. Comparison of the estimated spectral filter time constant (t) based on cospectra with CSAH, 
CSAsqrt(H)  and CSAsqrt(H),sync in red, green and blue, respectively. The black stipulated lines characterise the 
values of 𝜏 which were used to generate the attenuated time series (Aslan et al., 2020). 

The resulting uncertainty of annual flux estimates caused by the choice of the method to estimate H have 

been investigated using data from the Siikaneva fen site in Finland (Peltola et al., 2013). We showed that 

the CH4 fluxes corrected using the PSAI07 based time constants were overestimated between 0 and 12% 

(on average 4%), while the PSAA20 approach showed no bias. On the other hand, fluxes corrected using 

the CSAH based time constant were underestimated up to 8%, while the CSAsqrt(H) overestimates the fluxes 

up to 22%, the bias of which was further improved with CSAsqrt(H),sync, varying between ±2%. 

 

6.3 Determining the spectral transfer function and correction factor with cospectra and its 
interdependence with the time lag estimation  

The results of the CSA from the above study pointed to fundamental challenges when working with co-

spectra from attenuated time series, with and without sensor noise. First of all, literature suggests two 
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different ways to deal with the spectral transfer function (HLPF). While a majority of publications suggest 

using 𝐻mno = √𝐻	for co-spectra (Moore 1986, Moncrieff et al. 1997, Ibrom et al. 2007, Fratini et al., 2012), 

Horst (1997) suggested using HLPF = H for both power spectra and co-spectra, which was used by Eugster 

and Senn (1995), Mammarella et al. (2016), Aubinet et al (2000), Aubinet et al (2012) and Hunt et al. 

(2016) who successfully motivated the respective change of EddyPro, an open-source eddy covariance 

post-processing software, sponsored by LI-COR (Lincoln, USA) and developed by G. Fratini and others. On 

the other hand, all these publications have neglected the phase shift caused by low-pass filtering (Ibrom 

et al., 2007b).  

The existence of a time lag due to low-pass filtering 𝛥𝑡mno  complicates the correct processing in two ways. 

The questions arise, first, whether the time series of the scalar and the vertical wind speed has to be 

shifted by 𝛥𝑡mnoor not prior to calculating cospectra, and second, when the time series is shifted, what 

does this mean for the amplitude attenuation? So far, the above approaches do not explicitly mention 

how phase shift effects were considered.  

In the case co-spectra are used for the estimation of the system response time and related flux correction 

factor, we provide a new CSA approach which specifically accounts for the interaction between low-pass 

filtering induced phase shift and high frequency attenuation (Peltola et al., 2020). In particular, we show 

that if the CCM between the scalar and w is used, the correct transfer function HLPF is H*Hp, where 𝐻𝑝 =

cos 𝜙 − 𝜔𝜏 sin𝜙 is the part related to the phase shift 𝜙 = 𝜔𝛥𝑡mno   and 𝜔 is the radial frequency. The 

new transfer function provides the correct estimation of t, 𝛥𝑡mno  and the flux correction factor. Note that 

when using only H as done in Aubinet et al (2000) and Mammarella et al(2016), the system response time 

is underestimated, but the flux correction factor is very close to the ones given by using H*Hp. We further 

demonstrated that H*Hp is well approximated by √𝐻. This is consistent with results by Aslan et al (2020) 

and practically means that if the correct estimate of t (e.g. as given either by PSAA20, by H*Hp or by the 

overflow inlet system) is used and the flux is calculated by using CCM, the flux correction factor has to be 

calculated either taking H*Hp or √𝐻 as low pass filter transfer function HLPF in eq. 7. In this case analytic 

formulas for CF as proposed by Massman (2000) and Horst et al (1997) likely give biased results. For more 

details, please refer to Peltola et al. (2020). 

  

6.4 Conclusions and recommendations 

The analysis showed that subtle differences in four published approaches to estimate the spectral transfer 

function (HLPF) from measured power or co-spectra yielded considerably deviating and biased results. 

Generally, the approaches using power spectra resulted in estimates closer to the real H, with an improved 
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approach that includes both H and noise in one fitting approach yielding the best results. Considerable, 

systematic differences were found between the results from three approaches based on co-spectra, 

where even the choice of the shape of the H differs in literature. These differences point to a lack of 

fundamental understanding on how to interpret co-spectra between vertical wind speeds and attenuated 

scalars.  

As a final remark, when using power spectra, where some noise is evident on the attenuated scalar 

measurement, i.e. practically any closed-path eddy covariance system, the new fitting approach PSAA20 is 

recommended as the most accurate, precise and robust method to empirically estimate the time constant 

of H (Aslan et al., 2020). Then CF is calculated following the Fratini et al (2012) approach, e.g. using 𝐻mno =

√𝐻 in Eq. 7. On the other hand, we recommend to use H*Hp (or the approximation √𝐻) for the correct 

estimates of t and CF when the cross-covariance maximization and cospectra are used (Peltola et al., 

2020). 

7. FILTERING OF 30 MIN FLUXES BASED ON FRICTION VELOCITY 

 
The impact of friction velocity (𝑢∗) filtering is potentially large at high-flux sites, especially fertilized 

agricultural sites where episodic non-CO2 emission bursts are often recorded after fertilizer application or 

rain events. Flux data availability around such high-emission events needs to be as complete as possible 

for an accurate gap-filling of flux data gaps. At low-flux sites and in the absence of episodic peak emissions, 

the impact of 𝑢∗ filtering is generally expected to be low. At such sites, flux values are close to the 

detection limit and often fluctuate around zero throughout the year, i.e. even many data points lost due 

to 𝑢∗ filtering can be gap-filled with relatively high confidence. 

Therefore, it is advisable to keep data loss due to u* filtering to a minimum, in particular for agricultural 

sites. The current approach in FLUXNET is to calculate the final yearly 𝑢∗ threshold for NEE as the 

maximum of 4 respective seasonal thresholds (Pastorello et al., 2020). This approach has the disadvantage 

that measurements that can be considered good data with regard to the respective seasonal thresholds 

are rejected because 𝑢∗ was below the yearly threshold. In addition, the computation of the yearly 

threshold is potentially driven by a single season that is of lesser interest in regard to fluxes. For example, 

at the grassland site Früebüel in Switzerland (CH-Fru) the calculation of seasonal thresholds for 2018 by 

means of the MPT method (100 bootstrap runs, thresholds are given as the 50% quantile of the 

bootstrapped uncertainty distribution, Wutzler et al. 2018) was found at 0.17 m s-1 for the time period 

between September and November (autumn), but at 0.04 m s-1 between June and August (summer) of 
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the same year. Following the FLUXNET approach and applying the autumn threshold to summer fluxes 

results in a loss of 37% of recorded NEE values, compared to a loss of only 4% when the summer threshold 

is applied (Figure 16). It is important to note that this data loss comes in addition to data rejected by the 

steady state and integral turbulence characteristics tests (Foken and Wichura, 1996). Generally, seasonal 

𝑢∗ thresholds fluctuate over the course of a year, and yearly thresholds as the maximum of these seasons 

are therefore potentially significantly different from respective seasonal thresholds (Figure 17). 

To minimize data loss due to the 𝑢∗ filter it is therefore advisable to use seasonal thresholds detected for 

the CO2 flux instead of one single threshold for the complete year. The robustness of seasonal 𝑢∗ 

thresholds could be increased by pooling seasonal data from adjacent years before calculations. For 

example, to calculate the summer threshold for 2018 for a given site, the threshold computation would 

be run using the pooled summer data 2017, 2018 and 2019. This approach is somewhat similar to the 

calculation of the variable 𝑢∗ threshold (VUT) described for the FLUXNET2015 dataset, where a yearly 

threshold is extracted from the joint population of the thresholds found for the respective year and the 

thresholds found for adjacent years (Pastorello et al., 2020).  

 

Figure 16. Impact of applying a yearly 𝑢∗ threshold, calculated as the maximum of 4 seasonal 𝑢∗ 
thresholds, on summer NEE data at CH-Fru in 2018. (a) measured data after removal of data that failed 
the steady state and integral turbulence characteristics tests (Foken and Wichura, 1996), (b) measured 
data after additionally rejecting all values where 𝑢∗ < 0.17 m s-1 (autumn threshold calculated from 
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September-November data, corresponds to the maximum of seasonal thresholds in 2018), (c) measured 
data after rejecting all values where 𝑢∗ < 0.04 m s-1 (summer threshold calculated from June-August data).   
 

 

Figure 17. Seasonal 𝑢∗ thresholds at CH-Fru between 2005 and 2019. Thresholds are given as the 50% 
quantile of the bootstrapped uncertainty distribution from 100 bootstrap runs. 

8. FLUX GAP-FILLING 

8.1 Background 

Gap-filling techniques are well established and standardized for CO2 fluxes (Moffat et al., 2007, Papale et 

al., 2006), but not for the other trace gases. Gap-filling N2O fluxes is challenging due to their dependence 

on multiple drivers as well as their spatial and temporal heterogeneity (Butterbach-Bahl et al., 2013; 

Cowan et al., 2015). Especially at agricultural sites, N2O fluxes are often characterized by sporadic high-

emission events, while fluxes in between those events remain low and often below the limit-of-detection 

of the applied analyser, which in turn further exacerbates the identification of viable input parameters for 

gap-filling methods. Even at agricultural sites such as intensively managed grasslands, where high N2O 

quantities can be emitted during and after management events such as fertilizer application and 

ploughing, fluxes are typically low during the rest of the year (Hörtnagl et al., 2018; Merbold et al., 2014). 

It is therefore unlikely to be able to define a single set of drivers that can reliably be applied to gap-fill N2O 

fluxes across sites and ecosystems. However, in recent years the random forest method has emerged as 

a useful method not only for gap-filling time series data, but also for feature selection in modelling 

approaches (e.g., Kim et al., 2019; Kursa and Rudnicki, 2010). In this chapter, we tested random forests 

for gap-filling and feature selection, and then used selected features in the widely applied MDS gap-filling 

method (Reichstein et al., 2005).  
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For CH4 emissions, since the drivers of the underlying processes are more complex than those of CO2 

fluxes, artificial neural networks seem to be promising with an overview of studies found in Knox et al. 

(2016).  

Here, we tested different gap-filling approaches from simple interpolation methods to machine learning 

algorithms for N2O and/or CH4. 

 

• Interpolation methods: 

o SLI – simple linear interpolation 

o SRAM – simple running arithmetic mean 

o SRMED – simple running median 

o MDC – Mean diurnal course after Falge et al. (2001) 

o MDA - Mean diurnal averaging after Reichstein et al. (2005) 

• Look-up tables: 

o LUT – look-up tables binned to one to three variables V1 to V3 in a time window 

of ±3 or ±7 days after Falge et al. (2001) 

o MDS  - a LUT combined with MDA in marginal distribution sampling (MDS), a gap 

filling scheme adopted for CO2 fluxes  after Reichstein et al. (2005) 

• Machine learning algorithms: 

o RF – random forests (Breiman 2001) 

o ANN – artificial neural networks based on backpropagation (Moffat et al.,2010)  

8.2 N2O fluxes 

Gap-filling approaches were tested mainly for N2O fluxes measured at the grassland site Chamau (CH-Cha) 

between 2013 and 2015. The site is intensively managed with up to six cuts per year, multiple fertilizer 

applications and occasional grazing (Fuchs et al., 2018; Merbold et al., 2014). Data coverage for N2O fluxes 

during the measurement period was high (50,341 of 52,560 half-hours available, data coverage 95.8%). 

After quality control, 30,390 measured half-hours (57.8%) were available. 

Among the tested gap-filling approaches were (1) marginal distribution sampling (MDS) following the 

approach by Reichstein et al. (2005), (2) random forest (RF), an ensemble learning method based on 

decision trees (Breiman, 2001), (3) simple linear interpolation (SLI), (4) simple running arithmetic mean 

(SRAM) and (5) simple running median (SRMED).   
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Gaps in the data series were filled using different approaches, with several methods arriving at similar 

overall N budgets (Table 3). The resulting N2O budget for the complete 3-year time period and applying 

RF was found at 15.23 kg N2O-N ha-1. In RF, a large number of decision trees operate as an ensemble: the 

most "voted for" class prediction becomes the model prediction. This approach worked well not only for 

gap-filling N2O data (even in the presence of emission peaks, see Figure 18 results from 100 decision 

trees/estimators and Figure 19 for a comparison of measured and predicted fluxes), but also for model 

feature selection from large auxiliary datasets. During our tests, RF identified the variable time since slurry 

application (tsSA) as the most important model feature (model importance: 0.16), which highlights the 

importance to collect and share management data. Other important factors were: soil water content 

(SWC) and air temperature (TA; both 0.11), soil temperature (TS; 0.10), shortwave incoming radiation 

(SW_IN; 0.09) and vapor pressure deficit (VPD; 0.08).  

The three variables with the highest RF model importance were selected to generate the lookup table for 

the MDS method, with the exception that TS was used instead of TA due to its more direct role in the 

production and consumption of N2O (Butterbach-Bahl et al., 2013). The MDS algorithm was tested using 

the following settings: in MDS(1), similar meteorological conditions were defined by dividing SWC and TS 

into 20 evenly distributed lookup bins, which corresponds to similarity limits of SWC ±1.6 % and TS ±1.4°C. 

Conditions for days since slurry application were considered similar in a time window of tsSA ±2.4 days. 

Across the 3-year period, the MDS(1) budget amounted to 15.03 kg N2O-N ha-1 (Table 3). Similar results 

were found for MDS(2), using the same settings as MDS(1) with the exception that the lookup window for 

tsSA was slightly larger at ±5 days (14.94 kg N2O-N ha-1). Since VPD scored high during the RF feature 

selection and is used by default in MDS gap-filling of CO2 fluxes, it was included in MDS(3) in combination 

with the soil parameters SWC and TS. Similar to SWC and TS, similarity limits for VPD were calculated so 

that measured data are evenly divided into 20 similarity windows. VPD conditions were considered similar 

in the range of ± 211 Pa. Over 3 years, MDS(3) yielded the most similar result to RF (15.30 kg N2O-N ha-1). 

To complete the MDS tests, the typical CO2 drivers SW_IN, TA and VPD were applied to gap-fill N2O fluxes, 

using CO2-typical similarity ranges of ±50 W m-2, ±2.5°C and ±50 Pa, respectively, in MDS(4). The resulting 

budget showed slightly higher N2O emissions (15.53 kg N2O-N ha-1) than MDS(1)-(3) (Table 3). To some 

extent, the application of MDS with CO2 drivers is counter-intuitive since the three input drivers had 

relatively low predictive power for observed N2O exchange rates. However, since MDS applies look-up 

tables it seems to make sense that it nevertheless yields annual budgets that fall into expected ranges. 

In addition to RF and MDS, simpler methods were tested to identify the potential range of budgets 

calculated with the various approaches. Budgets calculated with the straight-forward simple linear 
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interpolation (SLI, with no gap size limit) yielded budgets similar to RF and MDS (15.18 kg N2O-N ha-1; 

Table 3), but is not recommended due to its high volatility to the length and distribution of gaps. 

Therefore, the risk to significantly over- or underestimate the true budget is high. However, SLI is 

potentially useful in connection with other gap-filling methods, e.g. to fill the smallest gaps in the dataset 

(e.g. 1-2 missing half-hourly values) before proceeding with other methods. In our test setup, SLI yielded 

virtually the same result for the grassland, mainly because (1) the available data around fertilization events 

was relatively complete, (2) there were no major gaps throughout the 3-year period, (3) high fluxes were 

underestimated and (4) low fluxes were overestimated. 

The simple running arithmetic mean (SRAM) in a time window of ±2.5d (centered), short enough to 

capture peak dynamics, produced results similar to RF when the gap distribution of the dataset after 

quality control was approx. evenly distributed over the year and no major gaps (longer than five days, i.e. 

±2.5 days) were present in the dataset (15.17 kg N2O-N ha-1). Gap-filling with the simple running median 

(SRMED, centered time window) yielded the lowest estimates of all methods due to the insensitivity of 

the median to extreme values. 
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Table 3. Results of selected gap-filling runs for N2O fluxes 2013 – 2015 measured at CH-Cha. 

Method Drivers Time window (days) Min values Emissions (kg N2O-N ha-1) 

     2013 2014 2015 2013 – 2015 

RF P, PAR, SW_IN, SWC, TA, 
TS, VPD, tsP, tsSA, SA 

sliding - 5.99 5.85 3.39 15.23 

MDS(1) SWC, TS, tsSA (2.4d) increasing, sliding - 5.91 5.72 3.40 15.03 

MDS(2) SWC, TS, tsSA (5d) increasing, sliding - 5.90 5.68 3.36 14.94 

MDS(3) SWC, TS, VPD increasing, sliding - 5.92 5.93 3.44 15.30 

MDS(4) SW_IN, TA, VPD increasing, sliding - 5.97 6.03 3.53 15.53 

SLI - - - 5.92 5.68 3.58 15.18 

SRAM - 20 96 6.15 6.18 3.38 15.72 

 - 2.5 12 5.91 5.92 3.33 15.17 

SRMED - 20 96 5.19 5.55 2.76 13.50 

 - 10 48 5.26 5.56 2.85 13.67 

 - 5 24 5.29 5.57 2.89 13.75 

 - 2.5 12 5.30 5.58 2.91 13.79 

 

Conditions within a time window were considered similar using the following settings: (1) SWC ±1.6 %, TS ±1.4°C, tsSA ±2.4 days 
(2) SWC ±1.6 %, TS ±1.4°C, tsSA ±5 days; (3) SWC ±1.6 %, TS ±1.4°C, VPD ±211 Pa; (4) SW_IN ±50 W m-2, TA ±2.5°C, VPD ±50 Pa, 
typically used for gap-filling CO2 fluxes. 

Abbreviations: Methods: RF: random forest, MDS: marginal distribution sampling, SLI: simple linear interpolation, SRAM: simple 
running arithmetic mean, SRMED: simple running median. Drivers: P: precipitation, PAR: photosynthetically active radiation, 
SW_IN: incoming short-wave radiation, SWC: soil water content (5 cm), TA: air temperature, TS: soil temperature (5 cm), VPD: 
vapor pressure deficit, tsP: time since precipitation, tsSA: time since slurry application, SA: slurry application. 
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Figure 18. Comparison of half-hourly N2O fluxes between 2013 and 2015 at the intensively managed 
grassland site CH-Cha. Shown are (a) fluxes after quality control, (b) fluxes after gap-filling using random 
forest, (c) fluxes gap-filled using the MDS method (Reichstein et al., 2005) in similarity classes of SWC ±1.6 
%, TS ±1.4 °C and tsSA ±2.4 days. Emission peaks were observed after the application of slurry to the 
grassland (red colours). 

 

 

Figure 19. Gap-filled (random forest, red) and measured (after quality control, grey-blue) half-hourly N2O 
fluxes measured at CH-Cha. Emission peaks were observed after the application of slurry to the grassland. 
Slurry application dates: 26 May 2013, 25 Jun 2014, 9 Sep 2014. 
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Gap-filling methods were also tested for N2O fluxes from the ICOS Class 1 site Davos (CH-Dav). CH-Dav is 

characterized by weak N2O emission throughout the year and with fluxes often below the detection limit 

of the gas analyser. Between January 2016 and May 2017, a total of 20,252 out of 24,875 half-hourly N2O 

fluxes were recorded (data coverage 81.4%), of which 9,612 (38.6%) were available after quality control. 

Budgets calculated for the whole measurement period were similar across methods, with 0.31 kg N2O-N 

ha-1 (RF), 0.32 kg N2O-N ha-1 (MDS) and 0.35 kg N2O-N ha-1 (SRMED, time window 40 days with a minimum 

of 192 available values). Due to the high frequency of data gaps, SLI did not produce a realistic budget. 

Conclusions 

Recently, the random forest method was already successfully tested on CH4 data (Kim et al., 2019). At the 

moment, no such comparison exists for N2O eddy covariance fluxes, mainly due to the lack of multi-year 

eddy covariance datasets that would allow for testing across multiple sites and ecosystems. Due to its 

dynamic approach, RF is expected to perform well for N2O fluxes for a wide range of different conditions 

because of its ability to account for the dependence of N2O fluxes on multiple drivers. The comparison 

presented here stops short of testing the performance of the different approaches on datasets with 

artificial gaps. These performance tests constitute the next logical step in finding the “best” method for 

gap-filling, but eddy covariance datasets spanning multiple years of N2O fluxes are urgently needed. For 

the time being, the MDS approach using the soil parameters SWC and TS in combination with a third 

parameter (either tsSA, if available, or VPD) seems to produce robust results, at least for relatively 

complete datasets such as the CH-Cha data. However, the MDS performance will decrease significantly in 

the presence of longer gaps due to a lack of lookup values during the respective time period. In such a 

scenario, the RF method has the potential to provide reasonable gap-filling results, since the algorithm 

can be trained on datasets spanning multiple years.  

8.3 CH4 fluxes 

Besides ANNs (which have shown to be suitable for gap-filling of methane), we also tested simpler gap 

filling techniques that are easier to implement. As a test dataset, three months of half-hourly CH4 fluxes 

from the wetland site Skjern in Denmark were used (Herbst et al., 2011). To determine the performance 

of the gap filling techniques, artificial gaps with a length of full days were superimposed on the dataset 

and filled. A total of 999 bootstrapping samples was taken and the analysis carried out separately for all 

half-hours in a day (“full-time”), only daylight data (“day-time”), and only “night-time” data (Figure 20) 
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Figure 20: Performance measures for the various gap filling techniques for full-time (left), day-time 
(middle), and night-time (right). The boxplots are composed of the median (solid line), mean (star symbol), 
lower and upper quartile bounds (box), 10th and 90th percentiles (marks), and all outliers (dots) from the 
999 bootstrapping results. 

The performance for the three diurnal interpolation methods on the daily gaps was quite low with mean 

coefficient of determination (R2) below 20%, standard deviations (SDev) larger than 10 nmol m-2s-1 and 

large but centered bias errors. The look-up table from the MDS algorithm with fluxes binned to light, air 

temperature, and vapour pressure deficit did not work very well either, since these variables are only 

weakly correlated with CH4 fluxes. To obtain a better performance of LUTs, we characterized the main 

drivers of the dataset using the ANN approach by Moffat et. al, 2010. The variables which showed the 

highest correlations with the CH4 fluxes for this dataset were: 1) water table depth, 2) soil temperature 

at 20 cm depth, and 3) friction velocity. The look-up tables were tested separately for one _V1, two _V1V2, 

or three _V1V2V3 dependent variables. All of them had higher R2 (20% - 30%) and smaller bias errors.  
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As expected, the ANNs worked best with a mean R2 of up to 40%, SDev around 8 nmol m-2s-1 and the 

smallest bias for the all-day dataset. The ANNs trained on all available variables had a slightly higher 

performance than the one trained on the same three variables as the LUT_V1V2V3. There is a 

comprehensive study of different machine learning algorithms by Irvin et al. (currently in preparation) 

which will provide further insight in this matter for a wider range of datasets and ecosystems.  

Since the CH4 emissions at Skjern did not exhibit a strong diurnal cycle, the basic patterns of gap filling 

performances were similar for the three subsets of data in Figure 20. However, it is interesting to note 

that the LUTs and also the ANNs showed negative bias during daytime (underestimation) and positive bias 

during nighttime (overestimation) with neutral biases in total. This is probably due to the differences in 

footprint and turbulence of day versus night: The footprint is centered on methane emitting wetland 

during day-time but may include parts of adjacent agricultural fields without CH4 emissions during night-

time. Adding friction velocity as the third variable centered the bias at night-time. (LUT_MDS is 

automatically centered in this respect, since light is one of the variables used for binning which will split 

the data into night-time and day-time automatically by the look-up algorithm.) 

9. GUIDANCE ON FLUX MAGNITUDE AND MEASUREMENT REQUIREMENTS 
 

The ICOS Protocol (Nemitz et al., 2018) sets out the first set of criteria to help identify at which sites eddy-

covariance fluxes of N2O and/or CH4 are required to fulfil the requirements for Class 1 operation. Partly in 

support of ICOS and RINGO, a meta-analysis of CH4 fluxes from agricultural soils was undertaken based on 

a large existing pool of measurements for soils of the British Isles. 

9.1 Importance of CH4 exchange with N European Agricultural Soils 

 
A meta-analysis of fluxes measured from agricultural soils across the British Isles (UK and Ireland) was 

carried out with the intention of establishing a better knowledge of the magnitude of emissions and 

uptake of CH4 from these soil types. A total of 45,350 manual static chamber measurements from 15 

different sites across the British Isles were collated (Table 4). The mean of all fluxes measured was 0.51 ± 

0.12 nmol m-2 s-1, although the majority (68%) of individual measurements are negative. The maximum 

CH4 flux recorded from an individual measurement was 3054 nmol m-2 s-1, while the largest negative flux 

(uptake) was -74.7 nmol m-2 s-1. Although real, observations of this magnitude are rare in the data and 

attributed to “hotspot” areas where soil conditions are markedly different to general field conditions (i.e. 

water content, organic matter content, mechanical agitation, etc.). The positive tail of the distribution of 

observed flux magnitude stretches widely, following a log-normal pattern; however, the vast majority of 
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measurements are close to the detection limits of the flux chamber methods (lower = 0.173, upper = 0.519 

nmol m-2 s-1). A total of 66% of all measurement points fall below the magnitude of the upper detection 

limit of the method with a 95% quantile range of -1.57 to 1.84 nmol m-2 s-1 (Figure 21). 

 

Figure 21 (a) Histogram of all CH4 fluxes carried out using static chambers on a log-normal scale. (b) 
Histogram of all CH4 fluxes measured in arable studies using static chambers. (c) Histogram of all CH4 fluxes 
measured in grassland studies using static chambers. Histograms 1b and 1c are limited to range of -3 to 3 
nmol m-2 s-1, where the vast majority of observations occurred. The lower (blue) and upper (red) detection 
limits of the flux chamber methods used across the studies are included. 
 
Splitting the data by field site reveals that there are differences between the different field types, with 

uptake more likely to be observed at arable sites than grasslands (Table 4); however, these differences 

are not statistically different (t-test, p = 0.33) and none of the sites reports uptake of CH4 greater than the 

limit of detection of the chamber methodology used to calculate fluxes. In studies where animal manures 

or tillage events occurred, there was usually a relatively large increase in CH4 emissions reported. 

Assuming a global warming potential of 28 over 100 years (IPCC 2014, Fifth Assessment Report (AR5)), we 

present the estimated annual flux in units of g-CO2eq m-2. Although methane uptake is shown to be 

statistically significant from zero in some cases, fluxes of CH4 during these periods remain small in terms 

of global warming potential (GWP), with the largest annual uptake observed at any site to be -1.59 g CO2eq 
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m-2 yr-1. Where emission events such as manure application or tillage occur, there is a significant increase 

in short term emissions, lasting weeks to months. In these conditions, fluxes increase exponentially for 

short periods of time and chamber measurements are able to observe this behaviour. 

Table 4. A summary of the origins of the CH4 flux data presented in this study with the associated mean 
CH4 reported. A GWP multiplier of 28 is used (IPCC 2014, AR5). 

Site	 n	 Crop	Type	 Mean	Flux	
(nmol	m-2	s-1)	

Annual	
GWP	
(g	 CO2eq	 m-

2)	

Related	Publication	

Arable	 	 	 	 	 	
Norfolk	 56	 Farrow	 1.31	 13.88	 Unpublished	
Salisbury	 65	 Farrow	 1.02	 10.81	 Unpublished	
Surrey	 33	 Farrow	 1.39	 14.73	 Unpublished	
Lincolnshire	(a)	 114	 Miscanthus	 -0.04	 -0.42	 (Drewer	et	al.,	2011)	
Lincolnshire	(b)	 110	 Rapeseed	 -0.07	 -0.74	 (Drewer	et	al.,	2011)	
Lincolnshire	(c)	 109	 Wheat	 -0.09	 -0.95	 (Drewer	et	al.,	2011)	
Lincolnshire	(d)	 114	 Willow	 -0.11	 -1.17	 (Drewer	et	al.,	2011)	
East	Grange	(a)	 227	 Barley	 -0.03	 -0.32	 (Drewer	et	al.,	2017a)	
East	Grange	(b)	 184	 Scots	Pine	 -0.03	 -0.32	 (Drewer	et	al.,	2017a)	
East	Grange	(c)	 210	 Willow	 -0.03	 -0.32	 (Drewer	et	al.,	2017a)	
Boghall	 1792	 Wheat	 0.05	 0.58	 (Bell	et	al.,	2016)	
North	Wyke	(a)	 500	 Wheat	 0.16	 1.70(*)	 (Sánchez-Rodríguez	 et	 al.,	

2018)	
	 	 	 	 	 	
Grasslands	 	 	 	 	 	
Cow	Park	 83	 Grassland	 0.02	 0.21	 (Jones	et	al.,	2005)	
Norfolk	 55	 No	Grazing	 1.27	 13.46	 Unpublished	
Salisbury	 61	 No	Grazing	 0.08	 0.85	 Unpublished	
Surrey	 36	 No	Grazing	 0.59	 6.25	 Unpublished	
Easter	Bush	(a)	 704	 Sheep	

Grazing	
0.08	 0.85	 (Skiba	et	al.,	2013)	

HouseO'Muir	 80	 Grassland	 -0.33	 -3.50	 Unpublished	
Easter	Bush	(b)	 701	 Grassland	 2.84	 30.09(**)	 (Drewer	et	al.,	2017b)	
East	Grange	 184	 Grassland	 -0.03	 -0.32	 (Drewer	et	al.,	2017a)	
Crichton	 434	 Silage	Crop	 0.39	 4.13	 Unpublished	
Boghall	Glen	 560	 No	Grazing	 1.58	 16.74(*)	 Unpublished	
Kirkton	 580	 No	Grazing	 3.01	 31.89(*)	 Unpublished	
Easter	Bush	(c)	 650	 Silage	Crop	 0.02	 0.21	 (Cowan	et	al.,	2019	
Easter	Bush	(d)	 811	 Sheep	Grazed	 0.19	 2.01	 Unpublished	
North	Wyke	(b)	 704	 Silage	Crop	 2.67	 28.29(*)	 (Carswell	et	al.,	2019)	
Upper	Joiner	 544	 Silage	Crop	 0.82	 8.69	 (Cowan	et	al.,	2019)	
Johnstone	 Castle	
(a)	

1278	 No	Grazing	 -0.15	 -1.59(*)	 (Maire	et	al.,	2018)	

Johnstone	 Castle	
(b)	

2479	 Cattle	
Grazing	

-0.11	 -1.17	 Unpublished	

Johnstone	Castle	(c)	 31892	 Grassland	 0.50	 5.31(*)	 Unpublished	
(*) Experiment included application of manure or organic fertiliser: (**) Experiment included tillage 
event 
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To put the impact of CH4 emissions and uptake from agricultural soils in context with the other GHGs, we 

present the data from the Easter Bush grassland field (Midlothian, Scotland) where a variety of GHG 

measurements have occurred over several years (Jones et al., 2017; Cowan et al., 2018; Cowan et al., 

2020a; Cowan et al., 2020b), (Table 5). Excluding the study in which the tillage event occurred, the mean 

CH4 flux for the Easter Bush field site is 0.1 nmol m-2 s-1, which is close to the magnitude of CH4 measured 

from sites when organic fertiliser application and tillage events are ignored. Using these estimates, the 

relative contribution of CH4 to emissions from the soil are negligible when compared to uncertainties that 

would be expected in CO2 and N2O emission estimates. The contribution to the overall CO2eq emissions 

from the site makes up only 0.4 % of the total budget, i.e. only fractionally more than those estimated for 

carbon monoxide (CO, secondary GHG) which contributes an estimated 0.3% of the total budget. At sites 

where uptake is expected, a similar comparison could be expected in which uptake of CH4 would be 

statistically insignificant when compared to the uptake and emission of other GHGs. However, at sites 

where manure application and tillage occur on a regular basis (usually arable), emissions of CH4 are likely 

to be of the same magnitude in terms of GWP as N2O (approximately 30 g CO2eq m-2 yr-1). 

 

Table 5. The annual GHG budget for the soils and grass crop for the Easter Bush grassland field 
(Midlothian, Scotland) are presented, using GWP values provided from the IPCC 2014, Fifth Assessment 
Report (AR5). 

GHG Annual Emission 
(g C m-2)/ (g N m-2) 

Typical Emission 
(g C m-2)/ (g N m-2) 

AR5 GWP 
ratio 

Annual Flux 
(g CO2eq m-2) 

Annual GWP 
(%) 

CO2 -605 to 72 -217.9 1 -217.9 88 
N2O 0.64 to 5.42 2.75 265 26.02 11 
CH4 0.01 – 1.07 0.04 28 1.06 0.4 
CO 0.35 to 0.38 0.37 ̴2 ̴0.74 0.3 

 
From this meta-analysis it can be concluded that where known CH4 emitting events such tillage or organic 

fertiliser application are not carried out, agricultural soils in the British Isles (UK & Ireland) or subject to 

similar N European climatic conditions are highly unlikely to exceed the threshold at which CH4 fluxes are 

(a) robustly measurable by EC approaches and (b) make a significantly large contribution to the total site 

GHG budget. Thus, a blanket statement that for Class 1 compliance at N European stations on agricultural 

sites only N2O but not CH4 EC flux measurements are required seems appropriate. 
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10. CONCLUSIONS AND RECOMMENDATIONS 
 

1. Data synchronisation: the LICOR Smartflux update now provides the capability to act as an NPT time 

server allowing gas analysers to synchronise themselves to its PTP timing. Guidance needs to be 

developed on how to set up the different analysers to make best use of this capability. Data acquisition 

systems not based on the Smartflux module need to reproduce this capability. PTP->NPT accuracy, if 

implemented well, is deemed adequate for closed path sensors. Separate data streams will need to 

be submitted to the Carbon Portal for the final data matching to be done by the ETC. 

2. Spike detection: a new algorithm has been developed that performs better than previous algorithms. 

This is not just applicable to CH4 and N2O, but also to CO2. It is therefore recommended to implement 

this algorithm into the EddyPro engine to be available to the ETC as well as end users. The algorithm 

now needs to be tested further on real flux data, especially on CH4 flux data that contains real extreme 

events, e.g. from ebullition events and ruminants.  

3. Time-lag determination: two approaches were investigated to improve the time-lag quantification 

when time-series show low SNR, an experimental and an improved numerical method:  

a. The experimental method (reference gas overflow inlet) performed robustly and at the same 

time provides an estimate of (i) the inlet/analyser response time and (ii) instrument noise. 

However, implementation and data logging require some effort from site operators as no off-

the-shelf implementations are currently available. The incorporation of the data streams into 

the ETC data system needs to be discussed.  

b. First tests showed that the improved numerical method, based on prewhitening (PW), can 

detect a robust time-lag in more conditions than standard cross-covariance maximisation and 

it can also provide a measure of confidence for the time-lag. However, the method cannot 

capture the time-lag in all situations. The time lag detection strongly depends on the model 

adopted to filtering data. In some circumstances, in particular when the covariance is strongly 

unstable for instance, it would be appropriate to increase the model complexity to improve 

the effectiveness of the pre-whitening procedure.  

Based on the information to date it is recommended: 

- Where at all possible, use an analyser that also measures a compound showing a large flux for 

most of the time (e.g. CO2, or CH4 at wetland sites) so a proxy gas is available, especially for the 

processing of N2O fluxes. 

- To implement the prewhitening method into EddyPro and use it. 
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- To do further test to decide on a confidence threshold level above which the PW time-lag is 

deemed to be robust.  

- Use the PW time-lag if confidence is high, otherwise use the time-lag from the proxy gas if 

available, otherwise interpolate time-lags. 

- The ETC needs to flag stations at which time-lags vary with time and for which too little data from 

PW or proxy gas are available to robustly derive time-lags. In these situations, the options should 

be given to (i) either switch to a different analyser that measures a (different?) proxy gas or (ii) 

implement the reference gas overflow inlet. 

4. Quantification of time-response. Deriving the system response time from the power spectral density 

of the gas mixing ratio is sensitive to how instrument noise is dealt with. The current approach of 

Ibrom et al. (2007) was found to remove real signal in certain condition and a new approach, based 

on combining the fit to the noise and the response function and constraining the noise to be white, 

eliminated this problem and improved the ease of the fit (Aslan et al, 2020). This approach should 

extend the applicability of the power-spectral approach (PSA) to spectra measured with lower signal-

to-noise ratio, i.e. to smaller fluxes and noisier instruments. It is recommended to update the fitting 

procedure in EddyPro. In addition, the RINGO work has re-highlighted the interconnectivity between 

the co-spectral attenuation and the time-lag quantification. When using the co-spectral approach 

(CSA) to derive the response time and the gas mixing ratio and w time series are shifted according to 

CCM approach, it is recommended to use H*Hp (or the approximation √𝐻) for the correct estimates 

of response time and flux correction factor (Peltola et al., 2020). 

In general, the system time-response tends to be less variable than the time-lag and this makes it 

easier to extrapolate the time-response from high-flux periods to extended periods of low fluxes 

during which a response time cannot be derived. On the other hand, if periods with relatively high 

signal-to-noise ratio are not available, the recommendation is to estimate the response time from a 

proxy gas measured in the same analyser (e.g. CO2) for which the spectral transfer function is well 

defined and easy to fit.  

5. Analyser noise quantification. Gas analysers for N2O and CH4 need to work at their optimum to achieve 

the flux detection limits needed to monitor background fluxes and their performance therefore needs 

to be monitored continuously. The method to derive analyser noise from the autocorrelation function 

by Lenschow et al. (2000) should be implemented into EddyPro and routinely applied by the ETC. 

Automated feedback to the station managers would be useful if an increase in the noise level above 

a certain threshold is observed. This approach only quantifies random noise, but not structured noise 
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which can be generated, e.g., by temperature fluctuations. Thus, the environmental conditions of the 

analyser need to be temperature controlled as described by Nemitz et al. (2018). 

 

6. u* filtering. Under low turbulence conditions, typically characterized by low u* values, the measured 

fluxes do not represent the surface exchange and other not quantifiable flux components (advection) 

may dominate. In case of CH4 and N2O flux measurements, current approach follows the 

recommendation given by Nemitz et al (2018) on performing 𝑢∗ filtering on the basis of a 𝑢∗ threshold 

from CO2, for which it can be estimated, to characterize site-specific conditions of limiting turbulence. 

However, for those sites, like wetlands characterized by extent water surfaces/ponds within the flux 

tower footprint, it should be checked if turbulence is a driver of diffusive gas fluxes, and in this case 

𝑢∗ filtering should be avoided. In addition, based on the results presented for a grassland site CO2 

fluxes, it was proposed to assess whether current FLUXNET2015 approach (Pastorello et al, 2015) 

could be further developed by using seasonal 𝑢∗ thresholds instead of one single threshold for the 

complete year. This would probably minimize data loss due to the 𝑢∗ filtering. The robustness of 

seasonal 𝑢∗ thresholds could be increased by pooling seasonal data from adjacent years before 

calculations.  

7. Gap-filling. Gaps in CH4 and N2O flux measurements require reliable gap-filling algorithms to 

accurately estimate site annual budgets and seasonal dynamics. Such task is particularly challenging 

for CH4 and N2O fluxes given their high spatial and temporal variability and non-linear responses to 

multiple ecosystem drivers. Here we have tested several gap-filling approaches on N2O and CH4 fluxes 

measured in a grassland and wetland site, respectively. For N2O flux dataset, the Random Forest and 

the Marginal Distribution Sampling methods had the better performance comparing to other simpler 

approaches. For the wetland site the ANN algorithm with water table depth, soil temperature at 20 

cm depth, and friction velocity as drivers gave the best performance.  Current efforts are focusing on 

systematically investigating all these approaches across a range of sites to provide best practices for 

gap-filling CH4 and N2O exchange (Irvin et al, in preparation). 

8. Update on site characteristics under which CH4/N2O flux measurements by EC are deemed 

appropriate and thus mandatory for Class-I sites. The ICOS Protocol (Nemitz et al., 2018) sets 

out the first set of criteria to help identify at which sites eddy-covariance fluxes of N2O and/or 

CH4 are required to fulfil the requirements for Class 1 operation. Partly in support of ICOS and 

RINGO, a meta-analysis of CH4 fluxes from agricultural soils was undertaken based on a large 

existing pool of measurements for soils of the British Isles. Accordingly, it was found that on 
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agricultural sites only N2O but not CH4 EC flux measurements are required, unless field 

practices promoting CH4 emissions, like tillage or organic fertiliser application, are carried out. 

 

 

 

11. List of symbols and acronyms 
 
Symbols [Units] 

CowT  Normalized cospectrum of kinematic heat flux [-] 

𝛥𝑡mno   Time-lag due to low-pass filtering [s] 

f  Natural frequency [Hz] 

𝑓0   Cut-off frequency [Hz] 

HLPF  Spectral transfer function [-] 

H  Lorentzian transfer function [-] 

HP  Part of transfer function describing phase shift [-] 

N  Noise term  

N  Acquisition frequency x time lag 

σT
2  Variance of un-attenuated T [K2] 

ST  Spectral density of sonic temperature 

SW_IN  Incoming shortwave radiation [W m-2] 

SWC  Soil water content [%] 

tsSA  Variable time since slurry application [day] 

tsP  Time since precipitation 

TS  Soil temperature [°C] 

TA  Air temperature [°C] 

Texp  Experimental transport time lag [s] 

Tline  Gas travel time through the sampling tube [s] 

Tanalyser  Analyser-specific response time [s] 

TVT  Gas travel time from valve to T-piece [s] 

Tactuation  Actuation time of the solenoid valve [s] 

𝑇14"356   Theoretical “eddy-covariance” time lag [s] 

TSI  Horizontal travel time from inlet to sonic [s] 

TIT   Travel time from inlet to T-piece [s] 
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Ts  Un-attenuated turbulent sonic temperature [K] 

𝜏  Response time [s] 

𝜏mno   Response time of first order filter [s] 

𝑢∗  Friction Velocity [m s-1] 

VPD  Water pressure deficit [Pa] 

𝑤~𝑇~______  Kinematic heat flux [K m s-1] 

 

Acronyms 

AR  Autoregressive 

a.s.l.  Above sea level 

ANN  Artificial Neural Network 

C  Carbon  

CH4  Methane 

CO  Carbon monoxide 

COS  Carbonyl sulphide 

CO2  Carbon dioxide 

CO2eq  Carbon dioxide equivalent 

CP  ICOS Carbon Portal 

CCM  Cross-covariance maximisation 

CCF  Cross-correlation function 

CF  Flux correction factor 

CSA  Co-spectral approach 

CSAH  Co-spectral approach implementing H 

CSAsqrt(H) Co-spectral approach implementing √𝐻 

CSAsqrt(H), sync Co-spectral approach implementing √𝐻 with shifted w time series 

CH-Fru  Grassland site Früebüel in Switzerland 

CH-Cha  Grassland site Chamau 

CH-Dav  ICOS Class 1 site Davos 

CPU  Central processing unit 

Cross-Cor cross-correlation 

Cross-Cov cross-covariance 

EC  Eddy Covariance 

EddyPro Eddy covariance post-processing software  
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ETC  Ecosystem Thematic Centre 

GARCH  Generalized AutoRegressive Conditional Heteroskedastic  

GHG  Greenhouse Gases 

GPS  Global Positioning System 

GWP  Global Warming Potential 

IC  Inorganic Carbon 

ICOS  Integrated Carbon Observatory System 

IIR  Infinite impulse response filter 

LoD  Limit of detection 

LUT  Look-up tables 

MDA  Mean diurnal averaging after Reichstein et al. (2005) 

MDC  Mean diurnal course after Falge et al. (2001) 

MDS  Marginal distribution sampling 

MPT  Moving Point Test 

N  Nitrogen 

NTP  Network Time Protocol 

N2O  Nitrous Oxide 

OLS  Ordinary least squares 

PAR  Photosynthetically active radiation 

PSA  Power spectral approach 

PSAI07  Power spectral approach developed by Ibrom et al. (2007b) 

PSAA20  Power spectral approach developed by Aslan et al. (2020) 

PTP  Precision Time Protocol 

PW  Prewhitening 

RF  Random Forest 

RM   Repeated median 

SLI  Simple linear interpolation 

SNR  Signal-to-noise ratio 

SRAM  Simple running arithmetic mean 

SRMED  Simple running median 

SA  Slurry application 

SDev  Standard deviation 

TL   Time lag 
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QCL  Quantum Cascade Laser 

QA/QC  Quality assurance/ quality control 

VOCs  Volatile Organic Compounds 

3D  Three-dimensional 

QCL  Quantum Cascade Laser 

VUT  Variable 𝑢∗ threshold 
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